100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
MEBP Lecture 6 on Predicting policy in the EU () €5,49
In winkelwagen

College aantekeningen

MEBP Lecture 6 on Predicting policy in the EU ()

 6 keer bekeken  1 keer verkocht

Summary of lecture 6 of the class Managerial Economics, which applies the spatial model to the EU, how the spatial model performs in real cases, and how to find points in the policy space

Voorbeeld 3 van de 20  pagina's

  • 18 mei 2021
  • 20
  • 2020/2021
  • College aantekeningen
  • Philippe van gruisen
  • 6
Alle documenten voor dit vak (8)
avatar-seller
joanaspessoa
Seminar 6 – Predicting Policy in the EU

 We have introduced the spatial theory of voting:
 Decision-making in committees
 One and two dimensions
 Median voter theorem
 Pivotal politics (KMVT)
 All this to predict the outcomes of policymaking

Part I – Spatial Theory applied to the EU
- Equilibrium outcomes under various procedures
- What can we learn from this?

Conditions of Spatial Model of voting
 Preferences of the players (plot them on a line)
 Alternatives, especially the status quo (we compare alternatives against the SQ)
 The rules of voting (procedures) of who can propose, amend and veto.

The European Commission
 27 Commissioners
 Voting by simple majority
o They vote because they need to agree how the draft proposal looks like. Then, the
proposal is sent to the Council and the EP.
 Assumptions:
o Commissioners have Euclidean preferences,
- i.e., single peaked and symmetric.
- They vote for alternatives that are closest to their ideal preference.
o Decision-making occurs on 1 dimension.
 Apply Black’s median voter theorem and focus on the preference of the median
Commissioner (COM). Instead of looking at all 27.

,The European Parliament
 705 MEPs
 Vote by simple majority:
o Two procedures: consultation and ordinary legislative procedure (= codecision).
The latter is where the EP has the strongest role.
o They vote on the Commission’s proposal and can also amend it with the Council.
 Assumptions:
o MEPs have Euclidean preferences: single peaked and symmetric.
o Decision-making occurs on one dimension.
 Apply Black’s MVT and focus on the preference of the median MEP (EP).




The Council of the EU
 27 member states represented by ministers
 Two voting procedures:
o Unanimity: all MS need to vote in favour
o Qualified majority voting (QMV) has two conditions:
 55% in favour
 MSs have to represent 65% of the EU population
 Assumptions:
o MSs have Euclidean preferences: single-peaked and symmetric.
o Decision-making occurs on one dimension.
 Apply K-majority voting theorem (KMVT). We focus on the preference of the left and
right pivotal players (MS). If the SQ is between the pivotal players, there is no policy change

, The Commission, EP and Council in a single model
Our model requires that we only know the position of the pivotal players of each body: (1)
median commissioner, (2) median MEP, and (3) four pivotal players in the Council.




If we also know the SQ against which to compare the alternatives, we only need to know the
rules of policymaking, which are described by the legislative procedure (policy-making game,
i.e., the voting rules). It depends on the procedure: co-decision or consultation.

The objective of the game is to maximise utility  their objective is to obtain a policy
outcome as close as possible to their ideal policy. Remember: utility depends on the distance
of the alternative to their ideal policy.

Game theoretical form
The game theoretical form is a sequential game:

 The different players make their decisions in a predetermined sequence.
 It is the opposite of a static game:
o In a static game, the players make their decisions simultaneously (e.g. prisoners’
dilemma).
o Sequential game is different because policymakers decide in a sequence, i.e., in
a set order. This means that the one who decides latter has more information
because it already knows what proposals have been made.
 When moves are sequential, we can draw out the game tree and reason backwards to
the beginning  we apply backwards induction to solve the game.

The Consultation procedure
 The Council votes with qualified majority voting (QMV).
 Procedure:
o EC makes a policy proposal
o EP gives an opinion
o Council amends by unanimity OR approves by QMV.

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper joanaspessoa. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €5,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 53068 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€5,49  1x  verkocht
  • (0)
In winkelwagen
Toegevoegd