100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting van het vak Talen en Compilers €5,22
In winkelwagen

Samenvatting

Samenvatting van het vak Talen en Compilers

1 beoordeling
 63 keer bekeken  5 keer verkocht

Samenvatting van het vak 'Talen en Compilers' aan de Universiteit Utrecht, gebaseerd op de hoorcolleges en lecture notes van de docent.

Voorbeeld 3 van de 26  pagina's

  • 26 mei 2021
  • 26
  • 2020/2021
  • Samenvatting
Alle documenten voor dit vak (1)

1  beoordeling

review-writer-avatar

Door: stormluykx • 10 maanden geleden

avatar-seller
pactasuntservanda
Languages, compilers and (context-free) grammars

What is a compiler and a parser?
A compiler translates one language into another (which is possibly the same), roughly:


Get hold of the structure of the input program attach semantics to a sequence of symbols check whether a program
makes sense optimize generate good machine code.


A parser takes a string of characters and tries to recognize a structure in the form of a tree.




Alphabet, languages and words
An alphabet is a (finite) set of symbols that can be used to form sentences, e.g.



The set of all Latin letters


Given such a set, we can consider (finite) sequences of elements of that set (in which the empty sequence is often written
as ). The set of sequences of a given set is written as and defined as:


the empty sequence is in .
if and , then is in .


(We typically use letters from the beginning of the (Latin) alphabet to represent single symbols, and letters from the end of
the alphabet to represent sequences.)


A word is a sequence of symbols from the alphabet. A language is a set of "correct" sentences of words. Thus, a language
is a subset of .




Grammars
Languages can be defined using inductive definitions, represented formally by making use of deduction rules.



Rule Meaning


If … and are true, then is true


is true (= axiom)



Grammars are a shorthand way to define a language inductively, by means of rewrite rules called productions (instead of
deduction rules). A grammar consists of multiple productions (e.g. in the grammar of palindromes).


Symbols from the alphabet are also called terminals in a grammar.

, The grammar makes use use of auxiliary symbols called nonterminals, that are not part of the alphabet and hence
cannot be part of the final word/sentence. (e.g. in the example production above.)

Starting from a nonterminal, we can rewrite successively until we reach a string of terminals. Such a sequence
is called a derivation.
A nonterminal could be a start symbol, often denoted as . (Context-free grammars have only one start
symbol.)


Note that not all languages can be generated/described by a grammar. On the other hand, multiple grammars may describe
the same language in which case these grammars are equivalent.



Context-free grammars
Grammars where the left hand side of a production always consists of a single nonterminal are called context-free
grammars. Languages that can be described by context-free grammar are called context-free languages.


A context-free grammar is a four-tuple , where:


is a finite set of terminal symbols.
is a finite set of nonterminal symbols.
is a finite set of production rules, each of form , where is a nonterminal and is a sequence of terminals
and nonterminals.
is the start symbol, .


Because context-free languages are relatively easy to deal with algorithmically, most programming languages are context-
free languages.



BNF (Backus Naur Form) and EBNF
Instead of writing every production on a single line, we may rewrite any number of rewrite rules for one nonterminal using a
shorthand notation called BNF, by using the symbol. e.g.:




can be combined to: .


Extended BNF (EBNF) is introduced to help abbreviate a number of standard constructions that usually occur often in the
syntax of a programming language:


and/or , means one or zero occurrences of nonterminal (i.e. optional).
, means one or more occurrences of nonterminal .
and/or , means zero or more occurrences of nonterminal .


These notations can be used for languages, grammars, nonterminals and sequences of terminal and nonterminal symbols.

, The language of a grammar
The language of a grammar , usually denoted , is defined as




Parse trees and ambiguity
We can visualize a derivation as a parse tree (a.k.a. abstract syntax tree (AST)). For example, for the grammar




the following derivation has the following parse tree:




The set of all equivalent derivations can be represented by selecting a so-called canonical element. A good candidate for
this element is the leftmost derivation. In a leftmost derivation, the leftmost nonterminal is rewritten in each step. (This is
not the case in the example above.)

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper pactasuntservanda. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €5,22. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 56326 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€5,22  5x  verkocht
  • (1)
In winkelwagen
Toegevoegd