100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting Groepentheorie €3,99
In winkelwagen

Overig

Samenvatting Groepentheorie

2 beoordelingen
 841 keer bekeken  5 keer verkocht

Een overzicht van de belangrijke begrippen en stellingen van Groepentheorie aan de UU. Het is gebaseerd op het boek Groups and Symmetry, Armstrong maar geen perfecte samenvatting van het boek.

Voorbeeld 3 van de 6  pagina's

  • 17 januari 2015
  • 6
  • 2014/2015
  • Overig
  • Onbekend
Alle documenten voor dit vak (1)

2  beoordelingen

review-writer-avatar

Door: lau86 • 7 jaar geleden

review-writer-avatar

Door: danisibbel • 8 jaar geleden

avatar-seller
RichardSchoonhoven
1 Group Theory
1.1 Basic Concepts
Groups : A group is a set G together with an operation on G which satisfies:
Associativity; (xy)z = x(yz) ∀x, y, z ∈ G
There exists a unique identity element e ∈ G such that xe = x = ex ∀x ∈ G.
Each element x of G has a unique inverse x−1 ∈ G such that x−1 x = e = xx−1 .

−1 −1
For x1 , x2 , . . . , xn ∈ G holds (x1 x2 . . . xn )−1 = x−1
n . . . x2 x1 . We will denote
m copies of x as xm and n copies of x−1 as x−n . For m, n ∈ Z, xm xn = xm+n
and (xm )n = xmn with x0 = e.

Abelian Groups : A group is abelian (commutative) if xy = yx ∀x, y ∈ G.

Dihedral Groups : A dihedral group is the group of symmetries of a regu-
lar polygon (flat plates of n ≥ 3 equal sides for n ∈ Z) denoted by Dn . Let
r be a rotation of 2π/n through the axis perpendicular to the plate and s a
rotation of π about an axis in the plane of the plate. Then the elements of Dn
are: e, r, r2 , . . . , rn−1 , s, rs, r2 s, . . . , rn−1 s with rn = e, s2 = e and sr = r−1 s.
The infinite dihedral group D∞ is the group G consisting of the set of func-
tions from the real line to itself that preserve distance and sends the integers
among themselves.

Order : The order of a finite group is the number of elements in the group,
denoted by |G|.

Subgroup : A subgroup of a group G is a subset of G which forms a group
under the operation of G. If H is a subgroup of G we write H < G. For an el-
ement x ∈ G, the subgroup generated by x, < x > is the set of all powers of x.

Theorem 5.1 : A subset H is a subgroup of G if and only if xy −1 ∈ H
whenever x, y ∈ H.

Theorem 5.2 : The intersection of two subgroups of a group is itself a
subgroup.

Cyclic Groups : If there is an element x ∈ G that generates all of G
then G is a cyclic group.

Theorem 5.3 : Every subgroup of a cyclic group is cyclic.

1

,Words : Let x1 , . . . , xk ∈ X, X < G and m1 , . . . , mk ∈ Z. A word in
mk
the elements of X is xm 1 m2
1 x2 . . . xk . The collection of all words is a sub-
group of G. This group is called the subgroup generated by X and if it fills
out all of G, X is called a set of generators for G.

Permutations : A permutation of X is a bijection from X to itself. The
collection of all permutations of X forms the group SX . The non-abelian
group of permutations of n positive integers is denoted Sn , the symmetric
group.
An element of Sn is called odd if it consists of an odd number of transposi-
tions, idem for even. The even permutations of Sn form the alternating group
An . The 3-cycles generate An .

Cyclic Permutation : A ”k-cycle” (a1 , a2 , . . . , ak ) sends a1 to a2 , a2 to
a3 etc. A 2-cycle is called a transposition. The transpositions of Sn generate
Sn as do (12), (13), . . . , (1n).

Isomorphisms : The notion of similarity in group theory is expressed
through isomorphisms. Two groups G and G0 are isomorphic if there ex-
ists a bijection φ from G to G0 such that φ(xy) = φ(x)φ(y), ∀x, y ∈ G. To
indicate that two groups are isomorphic we write: G ∼ = G0 and G and G0
have the same order. An isomorphism sends the identity of G to that of G0
and sends inverses to inverses.
If H < G, then φ(H) < G0 . Furthermore, an isomorphism preserves the order
of an element. Compositions of isomorphisms are also isomorphisms. Exam-
ples are; cube ∼= S4 ∼= octahedron, tetrahedron ∼
= A4 and dodecahedron ∼ =

A5 = isocahedron.

Cayley’s Theorem : Let G be a group, then G is isomorphic to a sub-
group of SG . If G is finite, it is isomorphic to a subgroup of Sn .

Matrix Groups : The set of all invertible n × n matrices (so det(A) 6= 0)
with entries in R forms the General Linear Group GLn . The set of orthogonal
matrices (At A = In ) forms the Orthogonal Group On . The elements of On
with det(A) = 1 form the Special Orthogonal Group SOn . The elements of
O2 with determinant 1 represent a rotation, the others represent a reflection.




2

, 1.2 Groups and Order
Direct Product : The direct product G × H of two groups G and H is a
group consisting of the ordered pairs (g, h), g ∈ G and h ∈ H with multipli-
cation defined as: (g, h)(g 0 , h0 ) = (gg 0 , hh0 ). If G and H are abelian, then so
is G × H and |G × H| = |G||H|.

Theorem 10.1 : Zm × Zn is cyclic if and only if the highest common factor
of m and n is 1.

Theorem 10.2 : If H and K are subgroups of G for which HK = G,
H ∩ K = e and hk = kh, ∀h ∈ H, k ∈ K, then G ∼
= H × K. Note that
HJ = {hj | h ∈ H, j ∈ J}.

Lagrange’s Theorem : The order of a subgroup of a finite group is al-
ways a divisor of the order of the group. If p is a prime divisor of the order
of the group, then the group contains a subgroup of order p.

Corollary 11.2 : The order of every element of G is a divisor of |G|.

Corollary 11.3 : If |G| is prime, G is cyclic.

Corollary 11.4 : If x ∈ G, then x|G| = e.

Relatively prime : Two integers n, m are relatively prime if the high-
est common factor (divisor) is 1.

Euler’s Totient Function : Euler’s totient function φ(n) denotes the num-
ber of integers that are relatively prime to n.

Euler’s Theorem : If the highest common factor of x and n is 1, then
xφ(n) ∼
= 1 mod(n).

Fermat’s Little Theorem : If p is prime and if x is not a multiple of
p, then xp−1 ∼
= 1 mod(p).

Cauchy’s Theorem : If p is a prime divisor of |G|, then G contains an
element of order p.

Theorem 13.2 : A group of order 6 is either isomorphic to Z6 or D3 .



3

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper RichardSchoonhoven. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €3,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 52510 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€3,99  5x  verkocht
  • (2)
In winkelwagen
Toegevoegd