100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Very well structured lecture notes - all you need to know for the exam - Marketing Strategy Research €5,39   In winkelwagen

College aantekeningen

Very well structured lecture notes - all you need to know for the exam - Marketing Strategy Research

 48 keer bekeken  0 keer verkocht

Very well structured lecture notes - all 7 - including a recap with example questions. All tutorials, case studies and lectures are being discussed. All I needed for the exam was this document.

Voorbeeld 4 van de 35  pagina's

  • 18 december 2021
  • 35
  • 2021/2022
  • College aantekeningen
  • Xi chen
  • Alle colleges
Alle documenten voor dit vak (1)
avatar-seller
riannestals
BM05MM MARKETING STRATEGY RESEARCH
1 INTRODUCTION

LECTURE 25-10-2021

SECTION 1: Introduction

Premise:

- Already have a clean dataset!
- Idea: we have consumers and then collect data (=abstraction of actual consumers)

Process:

- Cleaned data → generate insights → guide strategic decision making
- Data driven strategy!!
- How do we do this? → with TOOLS (focus of this course!)

Xi Chen, expertise:

- Quantitative marketing
- Digital marketing
- Policy evaluation
- Rich experience with data analysis

Vb. Charlie Temple (glasses store) -> sell this only online! No physical stores, no services etc, therefore they can
reduce the price. They have AR (augmented reality) in the digital fitting room.

Terms related to marketing analytics:

- CTA/ CTR/ CPC
- SEO/ SEA
- Google Analytics
- AB testing
- Data scraping

More availability of online data! Therefore more interesting to do (online) marketing analytics.

How frequently marketing analysis are used in companies?

- Availability of data → more time invested in marketing analytics → used in decision making

SECTION 2: Overview of the course

Marketing research process

DATA → TOOLS → STRATEGY

What kind of tools?

- 150 tools in 2011
- 8.000 tools in 2020!
- Choose which one is useful in your research

,Emphases:

- “Hands on” analytic experiences → too many technologies, we don’t know what works. Work with
real life data and cases
- Data analytics for insights & strategy
- Principles for “post-school” learning
o Principle 1
o Principle 2
o Principle 3… etc
Learn the principles behind marketing analytics which are useful in your future career with new
technologies. More focussed on insights and guidelines instead of specific technologies.



TOOLS:

1. Linear regression → market responses models
2. Bass model → new product diffusion
3. Conjoint analysis → product innovation (preferences elicitation)
4. Cluster analysis → segmentation (targeting and positioning)
5. Multi-dimensional scaling → positioning (how you are related from competitors, differentiated in the
market)

Learning objectives:

- Get hand on experiences with marketing analytics
- Understand the concept of data-drive marketing strategy
- To formulate of a framework of “when” and “how” to use a new analytic tool

Practical objectives:

- Get tools for thesis
- Make sure you understand the basics and move forward from this

Challenges:

- Diversities in group & class size
- Statistics is challenging -> not learn the mathematics, but the principles
- Online learning

Overview:

Session 2 = marketing response analysis

Session 3 = bass model

Session 4 = conjoint analysis

Etc..

Adapt blended learning → lectures on Monday:

- Basic concepts
- Systematic way of implementation

, - Interpretation of R outputs
- Limitations of tools

Principles of blended learning lectures:

- Principles of statistical analysis and marketing analytics

Recorded and posted on Canvas!!

Practical sessions → every Tuesday

- Learn how to analysis in R
- Try to get your hands dirty

Procedure practice sessions and R tutorials

- Xi will do a tutorial in first 30 minutes
- Tas available
- Tutorial videos are shared after class

3 sessions R tutorials:

- Section 1 = my tutorial (30 minutes)
- Section 2 = your practises (check R notebooks, replicate the results, think about how to run the
analysis)
- Section 3 = tutorial videos (5-10 minutes)

Case discussions: on Wednesdays

- Key methods to link analytics with marketing insights and strategies
- Data-driven (may be very different from general case discussion)
- For quality of case discussions, we split into two sections
- Twice the same contents
- Time:
o Group 1 = 13-14:45
o Group 2 = 15:00-16:45

SECTION 3: Case discussion

“Jetstar” example, background:

- Competing of two cheap airlines → analyse consumer preferences! What kind of factors are
influencing choices for cheap flights
- Opportunities for analytics?
- Marketing goals of analytics?
- Which tools to apply?

In the end: strategy recommendations

- How to formulate strategies based on analytical results?

ASSESSMENT

Sign up in duo’s! → Groups sign up on canvas.

, 2 types of questions

- Analysis & interpretation
- Conceptual or managerial questions

Each 15% → 2 assignments of session 3 and session 6 → 10 days to work on the assignment!

Exam (70%) → offline and two-hours → December 20th

Analytics + questions

- Conceptual questions and interpretation of R output
- Exemplary questions will be posted on BB in due time

CLOSED BOOK EXAM!!!

You get output -> explain and interpret. Little bit calculation (bring calculator!!), some ethics questions,
compare different methods (conceptual). No statistical mathematic included at all!

Exam on paper!! NOT online!

Group 2!! For discussion groups. Group 2 = 15:00-16:45

2 MARKET RESPONSE MODEL

LECTURE 1-11-2021

Structure this week:

- Lecture = Monday
- Tutorials = Tuesday
- Case discussion = Wednesday

SECTION 1: Agenda

1. Linear regression! -> use predictive modelling
2. Making assumptions -> how to do it? And how to check the assumptions? What to do when
assumptions are violated

Video: target knew teen was pregnant before her dad

- Computer model: finding out behaviour in shops which predicted pregnancy. VB. lotion in large
quantities
- Baby ads looked random -> habits matter -> predicting consumer behaviours

SECTION 2: Prediction and linear regression

Description of a prediction machine:

Feed machine with data → put in the machine → get prediction

Objective = to find functional relationship between input (variables) and output (something you want to
predict).

Prediction machines:

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper riannestals. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €5,39. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 73918 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€5,39
  • (0)
  Kopen