Applied Multivariate Data Analysis – Week 1,
Session 2
Ch 9: The Linear Model (Regression)
Introduction to the Linear Model (Regression)
The Linear Model with One Predictor
The fundamental idea is that – an outcome for a person can be predicted from a model and
some error associated with that prediction:
outcome i=( b 0 +b1 X i ) +error i
Y i=( b0 +b 1 X i ) + ε i
This model differs from that of a correlation => only in that it uses an unstandardized
measure of the relationship (b1 => the slope of the line/gradient)
- And includes a parameter (bo => the intercept; constant) => the value of the
outcome when the predictor is 0
The Linear Model with Several Predictors
Y i=( b0 +b 1 X 1 i b2 X 2 i )+ ε i
By estimating the b-values => can make predictions about the outcome based on both of the
predictor variables
Regression analysis – i.e., fitting a linear model to data and using it to predict values of an
outcome variable – from one or more predictor variables
͢ One predictor variable => simple regression
, ͢ Several predictors => multiple regression
Estimating the Model
The model can be described entirely by a constant (bo) and by parameters associated with
each predictor (bs)
The fit of the model can be estimated by looking at the deviations between the model and the
data collected
͢ The differences between the line (i.e., predicted values) and the observed data => the
residuals
If a model is a perfect fit for the data => then for a given value of the predictor(s), the model
will predict the same value of the outcome as was observed
- i.e., no residuals => no differences between the predicted values and observed
data
Computing the total error in a model => square the differences b/n observed values of
outcome and the predicted values from the model
2
total error=(observed i −modeli )
To assess the error in a linear model => use a sum of squared errors
- Referred to as the sum of squared residuals – or residual sum of squares ( SS R
)
The SS R => provides information about how well a linear model fits the data
͢ If SS R are large => model not representative of the data (i.e., lots of error in
prediction)
͢ If SS R are small => the line is representative
The method of ordinary least squares (OLS) => the method used to estimate the b
parameters that define the regression model for which the SSr is the minimum it can be
(given the data)
, Assessing the Goodness of Fit, Sum of Squares, R and R2
The goodness of fit – i.e., how well the model fits the observed data
The ss R => measures how much error there is in the model
- It quantifies the error in prediction
- It does not show whether using the model is better than nothing
So => compare the model against a baseline
- Check whether it improves how well one can predict the outcome
- Compare the ss R of the two models
If the model is good => it should have sig less error than the baseline model
Sum of Squares
Residual Sum of Squares ( ss R)
Represents the error in prediction (observed data vs
model)
2
ss R=(observed i−model i)
Compare the model vs baseline model
Calculate new model’s ss R
If ss R is less in new model => less error, best
model
Total Sum of Squares ( ssT )
Represents the sum of squared differences b/n observed
values and values predicted by the mean
2
ssT =(observedi −Y model)
Represents how good the mean is as a model of observed outcome values
Observed data vs. Mean value of Y
, Model Sum of Squares ( ss M )
Represents the reduction of the inaccuracy of the model – resulting from fitting the regression
model to the data
2
ss M =( Y model i−model i )
¿ ssT −ss R
Improvement in prediction resulting from using the linear model rather than the mean
Large ss M => large improvement in prediction
Small ss M => best model is no better than baseline
Explained Variance ( R2)
2
R => proportion of improvement due to the model
Multiply by 100 => percentage value
Represents the amount of variance in outcome – explained by the model (= SSM) –
relative to the total amount of variation there is to explain (= SS)
2 SS M
R=
SS
√ R2 => the correlation coefficient for the relationship between the values of outcome
predicted by model – and the observed values
Estimate of the overall fit of the regression model
2
R => estimate of the substantive size of model fit
Mean Squares and F-Statistic
F => ratio of improvement due to the model (= SSM) and the error in the model (= SSR)
It is a measure of how much a model has improved the prediction of the outcome –
compared to the level of inaccuracy in that model
systematic variance model
test statistic= =
unsystematic variance error ∈model
The average sums of squares – i.e., the mean squares (MS) – are used to compute F
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper galinajimberry. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €6,49. Je zit daarna nergens aan vast.