Newton
N1 Een voorwerp is in uniforme beweging, tenzij er krachten op werken.
d p⃗
F⃗
∑
N2 =
dt
N3 ⃗ =− F⃗
F 1,2 2,1
Gravitatie ⃗
F 2op1 =−G
m1m 2
̂
r1,2
r1,2
2
Arbeid & Energie
Impuls p⃗=mv⃗
⃗ d p⃗
F ⃗= I⃗= d p ⃗ = Δp ⃗
∫ ∫
Stoot I⃗= F dt en dus
dt
2
F ⃗∙ d r⃗
∫1
Arbeid W12 =
1
KE Ekin = mv 2
2
KE & Arbeid W12 = ΔEkin,12
Potentiaal
Als W12 slechts afhangt van begin- en eindpunten r 1⃗ en r 2⃗ en niet van het pad dat gevolgd is, dan
is F ⃗ een conservatieve kracht.
F ⃗ ∙ d r ⃗ = 0 dus ∇ ⃗ × F ⃗ = 0
∮
Consequenties
r⃗
F ⃗ = − ∇ ⃗V F ⃗∙ d r⃗
∫r ⃗
Potentiaal dus V( r ⃗ ) = −
0
Energiebehoud
Conservatieve krachten Ekin,1 + V1 = Ekin,2 + V2
2
F ⃗∙ d r⃗
∑ ∫1
In het algemeen ΔEkin,12 + ΔV12 =
non−cons
Impulsmoment l ⃗ = r⃗ × p ⃗
dl ⃗
N2 voor impulsmoment = r⃗ × F ⃗
dt
,Coördinaattransformaties
Cilindercoördinaten x ̂ = r ̂ cos θ − θ ̂ sin θ en ŷ = r ̂ sin θ + θ ̂ cos θ
cos θ −sin θ
Rotatiematrix rotatie over hoek θ
sin θ cos θ
Galileï Transformaties
Inertiaalstelsel Coördinaatstelsel waarin N1 opgaat.
Relatief Positie en snelheid
Absoluut Versnelling en tijd (voorlopig)
Stel S′(x′, y′, z′, t′) beweegt met snelheid V x ̂ ten opzichte van S(x, y, z, t).
x′ = x − Vt d x′ d(x − Vt) dx
y′ = y v′ = dt′
= dt
= dt
−V =v−V
z′ = z a′ =
v′
=
d(v − V )
=
dv
=a
dt′ dt dt
t′ = t
d 2 x′ d 2 x
We weten nu dat = 2 en spreken af dat m = m′, dus N2 is invariant onder Galileï trans.
dt′2 dt
d 2 x′ d2x
N2 invariant F′ = m′ 2 = m 2 = F
dt′ dt
Elastische Botsingen
In een volkomen elastische botsing wordt zowel impuls als kinetische energie behouden. In een
volkomen inelastische botsing wordt wél impuls maar niet kinetische energie behouden. Lees v
als de snelheid vóór de botsing en u als de snelheid na de botsing.
Behoud van impuls m1 v 1⃗ + m 2 v 2⃗ = m1 u 1⃗ + m 2 u 2⃗
1 1 1 1
Behoud van KE m1v12 + m 2 v22 = m1u12 + m 2u22
2 2 2 2
, Kepler & Centrale Krachten
K1 Planeetbanen zijn ellipsvormig.
K2 De verbindingslijn van zon naar planeet doorloopt elk interval gelijke oppervlakken.
K3 Omlooptijd en baanstraal zijn verbonden volgens T 2 /R 3 = 4π 2 /GM.
Een kracht is centraal als geldt dat F ⃗ ∥ r ̂ en F ⃗ = f (r)r.̂
dl ⃗
Behoud impulsmoment = r⃗ × F ⃗ = 0 (want F ⃗ ∥ r̂ )
dt
l ⃗ = r ⃗ × p ⃗ = r mvθ = mr 2 θ = constant
·
Impulsmoment polair
1 ·2 · 1 l2 Mm
Energiebehoud polair Etot = m(r + r 2 θ 2) + U(r) = m r· 2 + − G
2 2 2mr 2 r
2
l Mm
Effectief potentiaal U * (r) = −G
2mr 2 r
α l2 2Etot l 2
Planeetbaan r (θ ) = met α = en e = 1 +
e cos(θ − θ0) + 1 GMm 2 (GMm)2 m
Scattering
Onderzoek naar scattering, ofwel verstrooiing, legt eigenschappen van deeltjes vast door hun
interactie met bekende deeltjes te analyseren. Impact parameter en verstrooiingshoek zijn door de
onderlinge kracht verbonden.
F ⃗=
1 q1q2 k
Coulombverstrooiing r ̂ = r̂ centraal & conservatief
4πϵ0 r 2 r2
2
1 l k
Energieën in baan Etot = m r· 2 + + analoog aan Kepler
2 2mr 2 r
θ k
Verstrooiing tan =
2 m bv 2