100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting PABO rekenen bovenbouw - Iselinge Hogeschool €6,24   In winkelwagen

Samenvatting

Samenvatting PABO rekenen bovenbouw - Iselinge Hogeschool

 102 keer bekeken  7 keer verkocht

Samenvatting voor de kennistoets rekenen bovenbouw.

Voorbeeld 3 van de 17  pagina's

  • Nee
  • Hoofdstuk 1 t/m 5, 6.1 en 7.1
  • 26 april 2022
  • 17
  • 2021/2022
  • Samenvatting
book image

Titel boek:

Auteur(s):

  • Uitgave:
  • ISBN:
  • Druk:
Alle documenten voor dit vak (9)
avatar-seller
veerlekl
Hoofdstuk 1 samenhang verhoudingen, procenten, breuken en kommagetallen – verhoudingen,
procenten, breuken en kommagetallen

1.1 Verhoudingen zijn de basis
1.1.1 Overeenkomsten en verschillen
1.1.2 Absoluut en relatief

Absolute gegevens zijn getallen die naar daadwerkelijke hoeveelheden of aantallen verwijzen.
Relatieve gegevens over hoeveelheden of aantallen zijn verhoudingsmatige gegevens waar je niet
direct het daadwerkelijke getal of aantal aan kunt aflezen.

Een strookmodel is een goede manier om het verschil tussen absolute en relatieve gegevens duidelijk
te maken.

Om te voorkomen dat kinderen getallen en percentages door elkaar halen, is het verstandig de
getallen benoemd te noteren. Dit helpt om het onderscheid tussen absolute en relatieve gegevens
duidelijk te houden.

1.2 Onderlinge relaties
1.2.1 Begrip

Om kinderen greep te laten krijgen op de betekenissen van verhoudingen, procenten en gebroken
getallen, besteden reken-wiskundemethodes aandacht aan de verschillende verschijningsvormen
ervan. Om de samenhang te kunnen doorzien, is het ook nodig dat kinderen leren dat de domeinen
in de realiteit door elkaar voorkomen. Daarnaast leren kinderen de betekenis van bewerkingen met
verhoudingen en breuken te doorzien.

Breuken en kommagetallen kennen zowel overeenkomsten als verschillen. In betekenis komen ze
met elkaar overeen: het zijn allebei gebroken getallen. De notatie verschilt echter: kommagetallen
lijken juist op hele getallen en niet op breuken. Wiskundig gezien zijn hele getallen, kommagetallen
en breuken allemaal rationele getallen met verschillende notatiewijzen. Qua verschijningsvormen in
de realiteit is de opvallendste overeenkomst dat je zowel breuken als kommagetallen tegenkomt als
meetgetallen. Verder zijn er vooral verschillen.

Repeterende breuk = een breuk waarbij een reeks decimalen steeds herhaald wordt.

Repetendum = het deel van een breuk dat constant herhaald wordt. Bijvoorbeeld 3 bij 1/3 of 142857
bij 1/7.

Een operator doet iets met een getal, hoeveelheid of prijs.

1.2.2 Weetjes

Allerlei relaties moeten uiteindelijk in de vorm van declaratieve kennis beschikbaar zijn. Dit is parate
feitenkennis. Dit soort “weetjes” moeten snel beschikbaar zijn, zodat kinderen ze flexibel kunnen
toepassen bij het redeneren en rekenen met breuken, verhoudingen, procenten en kommagetallen.

De leerlingen zelf opgaven laten bedenken heet productief oefenen.

,Hoofdstuk 2 verhoudingen – verhoudingen, procenten, breuken en kommagetallen

2.1 Verhoudingen zijn overal

2.1.1 Evenredige verbanden

Een verhouding is een recht evenredig verband tussen twee of meer getalsmatige of meetkundig
beschrijvingen. Een evenredig verband betekent dat als het ene getal zoveel keer zo groot (of klein)
wordt, het andere getal (of de andere getallen) ook zoveel keer zo groot (of klein) wordt.

In de supermarkt kun je je afvragen welk merk in verhouding het goedkoopst is. Dit betekent dat je
niet naar de absolute prijs kijkt maar naar de prijs van een bepaalde, vergelijkbare eenheid of maat.

Naar rato = naar verhouding

Veel verhoudingen hebben betrekking op grootheden, zoals lengte, gewicht en inhoud.

Verschijningsvormen als snelheid en dichtheid zijn samengestelde grootheden. Snelheid kun je
bijvoorbeeld uitdrukken in het aantal afgelegde kilometers per uur (km/u). Die km/u is samengesteld
uit de grootheid lengte, met de maateenheid kilometer, en de grootheid tijd, met de maat uur. De
maat uur wordt bij het uitdrukken van snelheid op 1 gesteld.

Een andere veelvoorkomende verhouding is schaal. Een schaal geeft de verhouding aan tussen de
weergave van iets en de werkelijke grootte ervan. Bij deze formele schaalnotatie noteren we beide
getallen in dezelfde maateenheid.

Een percentage is een gestandaardiseerde verhouding: het totaal is op honderd gesteld. Bij niet-
gestandaardiseerde verhoudingen kan het totaal van alles zijn.’

Wanverhoudingen worden vaak gebruikt om informatie over te brengen of om aandacht te trekken.

Verhoudingen worden over het algemeen aangegeven met getallen. Dit zijn kwantitatieve
verhoudingen: de verhouding wordt uitgedrukt in een of meer getallen. we spreken van kwalitatieve
verhoudingen als er geen getal aan te pas komt. Kwalitatieve verhoudingen worden uitgedrukt in
woorden. Bijvoorbeeld: een kind is lang voor zijn leeftijd. Een kwalitatieve verhouding is vaak een
meetkundig verband. Een meetkundig verhouding is altijd kwalitatief.

Een verhouding kan betrekking hebben op grootheden, maar ook op andere zaken waar een getal
aan kan worden toegekend. Als een verhouding één grootheid of eenheid betreft, spreek je van een
interne verhouding. Een externe verhouding betreft twee verschillende grootheden.

Bij delen kan een onderscheid worden gemaakt tussen een verhoudingsdeling en een
veredelingsdeling. Bij een verhoudingsdeling representeren deeltal en deler hetzelfde. Het gaat dus
om de verhouding van het deel ten opzichte van het geheel. Bij de verdelingsdeling representeren
deeltal en deler elk iets anders.

Een lineair verband is een verband tussen twee grootheden dat als grafiek een rechte lijn heeft. Gaat
die grafiek door de oorsprong, dan is het verband een evenredig verband ofwel een verhouding.

2.1.2 Niet-evenredige verbanden

Sommige verbanden zijn niet evenredig en dus ook geen verhouding.

Het gaat om verbanden tussen lengte, oppervlakte en inhoud. Als iets twee keer zo groot wordt,
betekent het dat de lengte verdubbelt. Maar de oppervlakte wordt in twee richtingen verdubbeld:

, Zowel in de lengte als in de breedte. De oppervlakte wordt dus vier keer zo groot. De inhoud wordt in
drie richtingen verdubbeld, lente, diepte en hoogte, en wordt dus acht keer zo groot.

2.1.3 Bijzondere verhoudingen

De gulde snede is een verhouding die sinds de zeventiende eeuw staat voor een schoonheidsideaal:
de mooiste verhouding die bestaat.

De omtrek en de diameter van cirkels hebben een vaste verhouding. Hoe groot of klein een cirkel ook
is als je de omtrek van een cirkel deelt door de diameter, komt er altijd hetzelfde getal uit. Dit
verhoudingsgetal in ongeveer 22/7, oftewel ongeveer 3, 1415926 en wordt π (pi) genoemd.

2.1.4 Wiskundetaal bij verhoudingen

Verhoudingen kunnen worden aangeduid met getallen en met woorden. er zijn verschillende
zegswijzen met verhoudingen: iets is bijvoorbeeld “naar verhouding” of “in verhouding” duur en “zij
hebben een verhouding met elkaar”. Formele verhoudingentaal is bijvoorbeeld “1 op (de) 4” en “1
staat tot 4”.

2.2 Verhoudingen op de basisschool

2.2.1 Schets van de leerlijn verhoudingen

Informeel handelend en redeneren Kwalitatieve verhoudingen Groep 1/2
Kwantificeren van verhoudingen Vanaf groep 3

Modelondersteund redeneren en Eenvoudige contexten met Vanaf groep 4
rekenen in contextsituaties vermenigvuldigen en delen

Complextere contexten en getallen Vanaf groep 5
Modelondersteund en formeel Formele verhoudingentaal Vanaf groep 5
redeneren en rekenen
Relatie met breuken Vanaf groep 6
Procenten Vanaf groep 7


Informeel handelen en redeneren

Het gaat om het kwalitatieve: zichtbare verschillen in grootte, afstand en dergelijke. Verhoudingen
worden gekwantificeerd = er wordt een getal aan toegekend. Daarmee wordt het mogelijk om op
termijn te redeneren en te rekenen met kwantitatieve oftewel getalsmatige verhoudingen.

Modelondersteund redeneren en rekenen in contextsituaties

Al vanaf groep 4 komen verhoudingen impliciet aan bod bij allerlei eerlijk verdeelsituaties die kunnen
worden opgelost door te vermenigvuldigen. Aanvankelijk gaat het alleen om vermenigvuldigopgaven
met eenvoudige getallen, overeenkomend met het leren van de tafels van vermenigvuldiging.

Verhoudingen worden alleen aangeboden in een betekenisvol perspectief. Dit betekent dat
toepassingssituaties met verhoudingen die in het echte leven voorkomen als context worden
gebruikt. Aanvankelijk gaat het nog om eenvoudige contexten.

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper veerlekl. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,24. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 60434 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,24  7x  verkocht
  • (0)
  Kopen