100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Intro to Research in Marketing lectures + notes €5,97   In winkelwagen

College aantekeningen

Intro to Research in Marketing lectures + notes

 10 keer bekeken  0 keer verkocht

Lectures of IRM with a lot of notes!

Voorbeeld 6 van de 95  pagina's

  • 31 mei 2022
  • 95
  • 2021/2022
  • College aantekeningen
  • Els gijsbrechts
  • Alle colleges
Alle documenten voor dit vak (6)
avatar-seller
pienhuberts
Intro to Research in Marketing Spring 2022


Index

Introduction Lecture ................................................................................................. 2

ANOVA Lecture ....................................................................................................... 12

Linear Regression Lecture .................................................................................... 23

Factor Analysis Lecture ......................................................................................... 39

Cluster Analysis Lecture........................................................................................ 55

Logistic Regression Lecture ................................................................................. 67

Conjoint Analysis Lecture ..................................................................................... 77

IRM Wrap-Up Lecture ............................................................................................. 89

,Introduction Lecture
HBBA: Chapter 1
1.1 Defining multivariate analysis
HBBA: ‘Broadly speaking, it refers to all statistical methods that simultaneously analyze
multiple measurements on each individual or object under investigation’

Why bother?
→ Almost every real-life marketing problem requires statistical analysis of several variables:
you need them in your toolkit!
→ Crucial for Master Thesis:
• ‘Translate’ marketing problem
• Collect data
• Analyze using R

1.2. Some basic concepts
• Measurement scales
• Errors: reliability and validity
• Statistical significance and power

Measurement scales
Nonmetric scales: Nominal & Ordinal
Metric scales: Interval & Ratio

Nominal scale:
• Characteristics: unique
definition/identification, classification
• Phenomena: e.g., brand name, gender,
student ANR
• Appropriate methods of
analysis/statistics: e.g.: %, mode, chi-
square tests

Ordinal scale:
• Characteristics: indicate ‘order’,
sequence
• Phenomena: e.g., preference ranking,
level of education
• Appropriate methods of
analysis/statistics: percentiles, median,
rank correlation + all previous statistics

,Interval scale:
• Characteristics: arbitrary origin
• Phenomena: e.g., attribute scores, price
index
• Appropriate methods of analysis:
arithmetic average, range, standard
deviation, product-moment correlation, +
previous methods

Ratio scale:
• Characteristics: unique origin
• Phenomena: e.g., age, cost, number of
customers
• Appropriate methods of analysis: geometric
average, coefficient of variation, + all previous
methods


1.2.2. Errors: Reliability and Validity
Reliability = Is the measure ‘consistent’ correctly registered?
Validity = Does the measure capture the concept it is supposed the measure? (example =
income)

1.2.3 Statistical significance and power




Hypothesis testing
Suppose that the truth is: “No difference”:
what would error-free population measure, lead to? =

,Hypothesis testing
Suppose that the truth is: “No difference”:
what would sample measures, with error, lead to? =




Type I error (α) = probability of test showing statistical significance when it is not present
(‘false positive’)

Type II error (1-β) = probability of test showing statistical significance when it is present

Power
Power depends on:
• α (+)
• Effect size (+)
• Sample size (+)
Implications:
• Anticipate consequences of α, effect
and n
• Assess/incorporate power when interpreting results


1.3. Types of Multivariate methods
Dependence or Interdependence techniques
→ Dependence techniques
• One or more variables can be identified as dependent variables and the remaining as
independent variables
• Choice of dependence technique depends on the number of dependent variables
involved in analysis

→ Interdependence techniques
• Whole set of interdependent relationships is examined
• Further classified as having focus on variables or objects

,
, HBBA Chapter 2: Preliminary data analysis and data preparation (SELF STUDY)

2.1. Conduct preliminary analysis:
Why?
• Get a feel for the data
• Suggest possible problems (and remedies) in next steps
How?
• Univariate profiling
• Bivariate analysis

2.2. Detect outliers
What are outliers? → “Observations with a unique combination of characteristics identifiable
as distinctly different from other observations” (HBBA)

There are two basic types of outliers:
• ‘good’ = true value (probably)
• ‘bad’ = something is wrong?
→ To distinguish these types, one should investigate the causes:
− Procedural error
− Exceptional circumstances (cause known or unknown)
− ‘Regular’ levels, yet unique in combination with other variables (bivariate and
multivariate outliers)

Why worry? → Bad outliers completely mess up the results

How can we detect outliers?
• Univariate (Histograms, TS plots, Frequency Tables, Mean +/- 3SD, Box Plots)
• Bivariate (Scatterplot, Multiple Histograms)
• Multivariate (Mahalanobis D2)

Keep or delete? → “Judgement Call”
• Only observations that truly deviate can be considered outliers
• Removing many ‘outliers’ can jeopardize representativeness

2.3. Examining missing data
Missing data lead to:
• Reduced sample size
• Possibly biased outcomes if missing data process not random → 4-step approach: for
identification and remedying

Steps in missing data analysis:
1. Determine type of missing data: Ignorable / Non-ignorable missings?
2. Determine extent (%) of missing data: By variable, case, overall
3. Diagnose randomness of missing data: Systematic, Missing at Random (MAR),
Missing Completely At Random (MCAR)?
4. Deal with the missing data problem: Remove cases or variables with missing values,
use imputation

→ Step 3: Diagnose randomness of missing data
Are non-ignorable missings:
• Systematic = linked to level variable itself, another pattern?
• Missing at Random (MAR) = whether Y is missing depends on level of X. Yet, within
level of X: missing at random

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper pienhuberts. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €5,97. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 57114 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€5,97
  • (0)
  Kopen