Contents
P.1 Real numbers and the real line........................................................................................4
Rules for inequalities........................................................................................................... 4
Intervals.............................................................................................................................. 4
Absolute value.................................................................................................................... 4
Properties of absolute values..............................................................................................4
Equations and inequalities involving absolute values..........................................................4
P.2 Cartesian coordinates in the plane...................................................................................5
Increments and distances...................................................................................................5
Distance D between P(x1, y1) and Q(x2, y2).........................................................................5
Straight lines....................................................................................................................... 5
Equations of lines................................................................................................................5
P.3 Graphs of quadratic equations.........................................................................................6
Circles and disks.................................................................................................................6
Equations of parabolas.......................................................................................................6
Shifting a graph...................................................................................................................6
P.4 functions and their graphs................................................................................................6
P.5 Combining functions to make new functions....................................................................7
Sums, differences, products, quotients and multiples.........................................................7
Composite functions...........................................................................................................7
Piecewise defined functions................................................................................................7
P.6 Polynomials and rational functions...................................................................................7
The factor theorem..............................................................................................................7
Roots and factors of quadratic polynomials.........................................................................8
P.7 the trigonometric functions...............................................................................................8
Some useful identities.........................................................................................................8
Other trigonometric functions..............................................................................................9
Sine law.............................................................................................................................. 9
Cosine law.......................................................................................................................... 9
1.1 Examples of velocity, growth rate, and area...................................................................10
The area of a circle........................................................................................................... 10
Average velocity................................................................................................................ 10
1.2 Limits of functions........................................................................................................... 10
One-sided limits................................................................................................................ 10
, The squeeze theorem.......................................................................................................10
1.3 Limits at infinity and infinite limits....................................................................................10
Limits at infinity and negative infinity.................................................................................10
Limits at infinity for rational functions................................................................................10
Infinite limits...................................................................................................................... 11
1.4 Continuity....................................................................................................................... 11
Continuity at an interior point............................................................................................11
Right and left continuity.....................................................................................................11
2.1 Tangent lines and their slopes........................................................................................12
The slope of a curve......................................................................................................... 12
Normals............................................................................................................................ 12
2.2 The derivative................................................................................................................. 12
Right derivative................................................................................................................. 12
Left derivative................................................................................................................... 12
2.3 Differentiation rules.........................................................................................................13
Differentiation rules........................................................................................................... 13
The reciprocal rule............................................................................................................ 13
The quotient rule............................................................................................................... 13
2.4 The chain rule................................................................................................................. 13
2.5 Derivatives of trigonometric functions.............................................................................13
An important trigonometric limit.........................................................................................14
Derivative of sine function.................................................................................................14
Derivative of cosine function.............................................................................................14
Derivatives of other trigonometric functions......................................................................14
2.8 The mean-value theorem................................................................................................14
3.1 Inverse functions............................................................................................................ 15
3.2 Exponential and logarithmic functions............................................................................15
Laws of logarithms............................................................................................................ 15
3.5 The inverse trigonometric functions................................................................................15
4.3 Indeterminate forms........................................................................................................16
4.4 Linear approximation......................................................................................................17
4.10 Taylor polynomials........................................................................................................17
5.4 Properties of the definite integral....................................................................................18
Mean-value theorem for integrals......................................................................................18
5.5 The fundamental theorem of calculus.............................................................................18
Part I................................................................................................................................. 18
Part II................................................................................................................................ 19
, 5.6 The method of substitution.............................................................................................19
Integrals of tangent, cotangent, secant, and cosecant......................................................19
6.1 Integration by parts.........................................................................................................20
6.2 Techniques of integration...............................................................................................20
6.5 Improper integrals........................................................................................................... 20
Improper integrals of type I...............................................................................................20
Improper integrals of type II..............................................................................................20
7.9 First-order differential equations.....................................................................................21
Separable equations......................................................................................................... 21
First-order linear equations...............................................................................................21
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper jbtue. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €7,99. Je zit daarna nergens aan vast.