Week 1
Eigenwaarde en eigenvector
Zij A een n × n matrix. Een scalaire λ is een eigenwaarde als er een vector x bestaat,
waarvoor 𝑥 ≠ 0 en 𝐴𝑥 = 𝜆𝑥. In dit geval noemen we x een eigenvector.
Checken of getal eigenwaarde is
Getal is een eigenwaarde als de nulruimte van 𝐴 − 𝜆𝐼 ten minste één vector x bevat, 𝑥 ≠ 0
Eigenruimte
Zij A een n × n matrix en λ een eigenwaarde van A. De verzameling van alle eigenvectoren
behorend bij λ, samen met de nulvector, is de eigenruimte van λ in A, en noteren we als 𝐸!
Inhoud eigenruimte
Als 𝑥 een eigenvector is, is 𝑐𝑥 ook een eigenvector
Als 𝑦 ook een eigenvector is met de eigenwaarde 𝜆 van A, dan is elke lineaire combinatie
van 𝑥 en 𝑦, 𝑧 = 𝑐" 𝑥 + 𝑐# 𝑦, ook een eigenvector behorend bij de eigenwaarde λ van A
Dus voor matrix A met eigenwaarde λ zodanig dat 𝑥" , … , 𝑥$ allen eigenvectoren zijn, geldt
dat alle lineaire combinaties van 𝑥" , … , 𝑥$ ook eigenvectoren zijn, oftewel
𝑠𝑝𝑎𝑛(𝑥" , … , 𝑥$ ) ⊆ 𝐸!
Eigenruimte bepalen voor een gegeven eigenwaarde
Zij A een matrix met eigenwaarde λ. De eigenruimte 𝐸! bevat alle vectoren x zodat
(𝐴 − 𝜆𝐼)𝑥 = 0, oftewel de eigenruimte 𝐸! is de nulruimte van (𝐴 − 𝜆𝐼)
Eigenwaarde bepalen
Zij A een n × n matrix. De waarde λ is een eigenwaarde als ∃𝑥 ≠ 0 zodat 𝐴𝑥 = 𝜆𝑥
⟹ de nulruimte van(𝐴 − 𝜆𝐼) is niet leeg
⟹ (𝐴 − 𝜆𝐼) is niet inverteerbaar
⟹ de determinant van (𝐴 − 𝜆𝐼) is gelijk aan 0
Karakteristieke polynoom
De uitdrukking 𝑑𝑒𝑡(𝐴 − 𝜆𝐼) noemen we de karakteristieke polynoom in λ
Karakteristieke vergelijking
De vergelijking 𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = 0 noemen we de karakteristieke vergelijking in λ
Hoofdstelling van de Algebra
Elk polynoom 𝑃(𝜆) van graad n is te schrijven als product van n lineaire factoren
𝑃(𝜆) = 𝑎(𝜆 − 𝑏" )(𝜆 − 𝑏# ) … (𝜆 − 𝑏% ) met 𝑎 ≠ 0 en 𝑎 en 𝑏& complexe getallen zijn
Algebraïsche multipliciteit
De algebraïsche multipliciteit van een eigenwaarde 𝜆 = 𝑐 is het aantal keer dat de factor
(𝜆 − 𝑐) voorkomt in de karakteristieke polynoom
Geometrische multipliciteit
De dimensie van een eigenruimte behorend bij de eigenwaarde λ, noemen we de
geometrische multipliciteit van de eigenwaarde λ
Eigenwaarde van driehoeksmatrices
De eigenwaarden van een driehoeksmatrix zijn de diagonaalelementen
Eigenwaarde van inverteerbare matrices
Een n × n matrix A is inverteerbaar ⟺ 0 geen eigenwaarde is van A
Spoor en determinant
Zij A een n × n matrix met eigenwaarden 𝜆" , … , 𝜆% die niet noodzakelijk allemaal verschillend
zijn. Er geldt spoor(𝐴) = ∑%&'" 𝜆& en det(𝐴) = ∏%&'" 𝜆&
Eigenwaarden van machten van matrices
Zij A een n × n matrix met eigenwaarde λ en bijbehorende eigenvector x, zodat
𝐴𝑥 = 𝜆𝑥, dan geldt
a) Voor een positief geheel getal m geldt dat 𝜆( een eigenwaarde is van 𝐴(
"
b) Als A inverteerbaar is dan is ! een eigenwaarde van 𝐴 )"
c) Als A inv is dan geldt voor elk geheel getal m dat 𝜆( een eigenwaarde is van 𝐴(
, Vectoren die geen eigenvectoren zijn
Zij A een n x n matrix met eigenvectoren 𝑣" , … , 𝑣( en bijbehorende eigenwaarden
respectievelijk 𝜆" , … , 𝜆( . Als 𝑥 ∈ ℝ% geschreven kan worden als een lineaire combinatie van
de eigenvectoren, oftewel 𝑥 = 𝑐" 𝑣" + ⋯ + 𝑐( 𝑣( , dan geldt voor elk geheel getal 𝑘 ≥ 0, en
als A inverteerbaar is ook voor elk geheel getal 𝑘 < 0, dat 𝐴$ 𝑥 = 𝑐" 𝜆"$ 𝑣" + ⋯ + 𝑐( 𝜆$( 𝑣(
Stellingen opdrachten
a) A is een nilpotente matrix (𝐴( = 0) ⟹ 𝜆 = 0 is de enige eigenwaarde
b) A is een idempotente matrix is (𝐴# = 𝐴) ⟹ 𝜆 = 1 en 𝜆 = 0 zijn de enige eigenwaarde
Week 2
Lineaire onafhankelijkheid van eigenvectoren
Zij A een n × n matrix en 𝜆" , … , 𝜆( verschillende bijbehorende eigenwaarden met
eigenvectoren respectievelijk 𝑣" , … , 𝑣( . De eigenvectoren 𝑣" , … , 𝑣( zijn lineair
onafhankelijk
Gelijksoortigheid
De n × n matrices A en B zijn gelijksoortig als er een inverteerbare n × n matrix P bestaat
zodat 𝑃)" 𝐴𝑃 = 𝐵. In dat geval schrijven we 𝐴 ~ 𝐵
Equivalentie relatie gelijksoortigheid
Zij A, B en C n × n matrices, dan geldt
a) 𝐴 ~ 𝐴
b) als 𝐴 ~ 𝐵 dan 𝐵 ~ 𝐴
c) als 𝐴 ~ 𝐵 en 𝐵 ~ 𝐶 dan 𝐴 ~ 𝐶
Eigenschappen van gelijksoortige matrices
Zij A en B n × n matrices zodat 𝐴 ~ 𝐵, dan geldt
a) 𝑑𝑒𝑡(𝐴) = 𝑑𝑒𝑡(𝐵)
b) A is inverteerbaar ⟺ B inverteerbaar is
c) 𝑟𝑎𝑛𝑘(𝐴) = 𝑟𝑎𝑛𝑘(𝐵)
d) A en B hebben dezelfde karakteristieke polynoom
e) A en B hebben dezelfde eigenwaarden
f) 𝐴( ~ 𝐵( voor elk geheel getal 𝑚 ≥ 0
g) Als A inverteerbaar is dan 𝐴( ~ 𝐵( voor elk geheel getal m
Matrices kunnen aan alle eigenschappen voldoen maar niet gelijksoortig zijn
Als aan tenminste 1 eigenschap niet voldaan wordt, zijn de matrices niet gelijksoortig
Diagonaliseerbaarheid
Een n × n matrix A is diagonaliseerbaar als er een diagonaalmatrix D bestaat zodat 𝐴 ~ 𝐷
oftewel, als er een inverteerbare matrix P en diagonaalmatrix D bestaan zodat 𝑃)" 𝐴𝑃 = 𝐷
Diagonalisatie en eigenwaarden en eigenvectoren
Een n × n matrix A is diagonaliseerbaar ⟺ er 𝑛 lineair onafhankelijke eigenvectoren
behoren bij A
Om precies te zijn, ∃ 𝑖𝑛𝑣 𝑃 en diagonaalmatrix D zodat 𝑃)" 𝐴𝑃 = 𝐷 ⟺ de kolommen van P
bestaan uit 𝑛 lineair onafhankelijke eigenvectoren van A en de diagonaalelementen van D
respectievelijk de bijbehorende eigenwaarden zijn
𝑛 verschillende eigenwaarden
Als A een n × n matrix is met n verschillende eigenwaarden dan is A diagonaliseerbaar
Bases van eigenruimtes stelling
Zij A een n × n matrix met verschillende eigenwaarden 𝜆" , … , 𝜆$ . Als 𝛽& een basis is voor de
eigenruimte 𝐸!! dan zijn de vectoren in verzameling 𝛽 = 𝛽" ∪ … ∪ 𝛽$ lineair onafhankelijk
Algebraïsche en geometrische multipliciteit
Zij 𝜆 een eigenwaarde van de n × n matrix A. De geometrische multipliciteit van 𝜆 is kleiner
of gelijk aan de algebraïsche multipliciteit