100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting Niet-lineair Optimaliseren (FEB22006) €6,99
In winkelwagen

Samenvatting

Samenvatting Niet-lineair Optimaliseren (FEB22006)

 13 keer bekeken  2 keer verkocht

Uitgebreide samenvatting van Niet-lineair Optimaliseren (econometrie EUR)

Voorbeeld 2 van de 10  pagina's

  • 7 september 2022
  • 10
  • 2020/2021
  • Samenvatting
Alle documenten voor dit vak (1)
avatar-seller
LeonVerweij
Week 1
Unconstrained problem
min 𝑓(𝑥) where 𝑥 ∈ ℝ" is a real vector with 𝑛 ≥ 1 components and 𝑓: ℝ" → ℝ is a function
!
(usually smooth)
Smooth function
Function 𝑓 is smooth if it has derivatives of all orders everywhere on its domain. Almost
every function without ‘kinks’ is smooth
Difference inf and min
inf 𝑓(𝑥), largest value 𝑘 such that 𝑓(𝑥) ≥ 𝑘 for all 𝑥 ∈ 𝑆, exists always
#∈%
min 𝑓(𝑥), smallest value 𝑘 such that there exists a 𝑥 ∈ 𝑆 for which 𝑓(𝑥) = 𝑘, may not exist
#∈%
Weierstrass theorem – informal
A continuous function on a restricted domain has both a global maximum and a global
minimum. Restricted domain has to be made formal
Closed and bounded sets
A set is closed if all limit points of the set are contained in the set. Informally: “all borders
are included”.
A set is a bounded set if there exists an 0 < 𝑀 < ∞ such that for every 𝑥 in the set it holds
that −𝑀 ≤ 𝑥& ≤ 𝑀 ∀𝑖. Informally: “the set fits in a box”.
A compact set is one that is both closed and bounded
Weierstrass theorem
A continuous function on a nonempty, closed and bounded (compact) set in ℝ" attains its
global maximum and minimum
Fermat theorem
If 𝑥 ∗ is a local minimizer and 𝑓 is differentiable at 𝑥 ∗ , then ∇𝑓(𝑥 ∗ ) = 0. The Fermat theorem
gives first order necessary condition (FONC) for unconstrained minimization
4-step method
1. Model the problem and establish existence of global minima (Weierstrass theorem)
2. Write down first order necessary conditions (FONC), e.g. using Fermat theorem
3. Investigate all points of interest (points that meet FONC, and boundary points)
4. Give a conclusion
Convex sets
A set 𝑆 ⊆ ℝ" is a convex set if the straight-line segment connecting any two points in 𝑆 lies
entirely inside 𝑆. 𝑥, 𝑦 ∈ 𝑆 ⇒ 𝛼𝑥 + (1 − 𝛼)𝑦 ∈ 𝑆 ∀𝛼 ∈ [0,1]
Function
𝑓 is a convex function if its domain 𝑆 is convex, and 𝑥, 𝑦 ∈ 𝑆 ⇒
𝑓(𝛼𝑥 + (1 − 𝛼)𝑦) ≤ 𝛼𝑓(𝑥) + (1 − 𝛼)𝑓(𝑦) ∀𝛼 ∈ [0,1].
𝑓 is a convex function if its domain 𝑆 is convex, and 𝑒𝑝𝑖(𝑓) is a convex set (epi = epigraph)
Tests for convexity
Given convex functions 𝑓 and 𝑔:
- 𝑓(𝑥) + 𝑔(𝑥) is convex
- 𝑓(𝐴𝑥 + 𝑏) is convex
- 𝛼𝑓(𝑥) is convex ∀𝛼 ≥ 0
- max{𝑓(𝑥), 𝑔(𝑥)} is convex (may ruin smoothness)
- 𝑔N𝑓(𝑥)O is convex if 𝑓 is convex and 𝑔 is convex and nondecreasing on ℝ → ℝ
- Given concave function ℎ: −ℎ(𝑥) is convex

, Hessian
Given a twice differentiable function 𝑓 on domain 𝑆, the Hessian ∇( 𝑓(𝑥) is defined by
𝜕2 𝑓 𝜕2 𝑓 𝜕2 𝑓
⎡ 𝜕𝑥2 ⋯ ⎤
𝜕𝑥1 𝜕𝑥2 𝜕𝑥1 𝜕𝑥𝑛
⎢ 21 ⎥
𝜕 𝑓 𝜕2 𝑓 𝜕2 𝑓
⎢ ⋯ ⎥
∇( 𝑓(𝑥) = ⎢𝜕𝑥2 𝜕𝑥1 𝜕𝑥22 𝜕𝑥2 𝜕𝑥𝑛 ⎥
⎢ ⋮ ⋮ ⋱ ⋮ ⎥
⎢ 𝜕2 𝑓 𝜕2 𝑓 𝜕2 𝑓 ⎥
⎣𝜕𝑥𝑛 𝜕𝑥1 𝜕𝑥𝑛 𝜕𝑥2 ⋯ 𝜕𝑥2𝑛 ⎦
(
If its domain 𝑆 is convex, and ∇ 𝑓(𝑥) is positive semidefinite for all 𝑥 ∈ 𝑆, then 𝑓 is a convex
function. That is, all eigenvalues of ∇( 𝑓(𝑥) are nonnegative.
If its domain 𝑆 is convex, and ∇( 𝑓(𝑥) is positive definite for all 𝑥 ∈ 𝑆, then 𝑓 is a strict
convex function. That is, all eigenvalues of ∇( 𝑓(𝑥) are positive
Quadratic forms
)
𝑓(𝑥) = ( 𝑥 * 𝐴𝑥 + 𝑏 * 𝑥 + 𝑐, with 𝐴 symmetric. ∇𝑓(𝑥) = 𝐴𝑥 + 𝑏 and ∇( 𝑓(𝑥) = 𝐴. A quadratic
form is convex ⟺ 𝐴 positive semidefinite is, and strictly convex ⟺ 𝐴 positive definite is
Local is global
For unconstrained convex problems: ‘local is global’
Convex Fermat theorem
Let 𝑓 be a convex, differentiable function. If there exists a 𝑥 ∗ such that ∇𝑓(𝑥 ∗ ) = 0, then 𝑥 ∗
is the global minimizer of 𝑓. The convex Fermat theorem gives the first order sufficient
conditions for unconstrained minimization
Shortcut 4-step method
You can assume there exists a minimum by skipping Weierstrass. Then, show that there is a
point that meets the sufficient conditions, by the convex Fermat theorem. If you can find
these points, you were right by assuming there exists a minimum
Subgradients
Let 𝑓 be a convex function on domain 𝑆, then 𝑟 is a subgradient of 𝑓 at point 𝑥 if
𝑓(𝑦) ≥ 𝑓(𝑥) + 𝑟 * (𝑦 − 𝑥) ∀𝑥, 𝑦 ∈ 𝑆. The gradient is a subgradient. The set of all
subgradients at point 𝑥 is called the subdifferential of 𝑓 at 𝑥, denoted by 𝜕𝑓(𝑥)
Convex Fermat theorem revisited
Let 𝑓 be a convex function. If there exists a 𝑥 ∗ such that 0 ∈ 𝜕𝑓(𝑥 ∗ ), then 𝑥 ∗ is the global
minimizer of 𝑓. This is the convex Fermat theorem generalized to non-differentiable
functions
Subdifferential calculus
Given convex functions 𝑓 and 𝑔:
- If 𝑓 is differentiable then 𝜕𝑓(𝑥) = ∇𝑓(𝑥)
- 𝜕(𝛼𝑓)(𝑥) = 𝛼𝜕𝑓(𝑥) for all 𝛼 ≥ 0
- 𝜕(𝑓 + 𝑔)(𝑥) = 𝜕𝑓(𝑥) + 𝜕𝑔(𝑥) (Minkowski sum)
- 𝜕N[|. |[O(0) = 𝐷" (unit ball in dimension 𝑛)
- 𝜕(max{𝑓, 𝑔})(𝑥) = 𝑐𝑜N𝜕𝑓(𝑥) ∪ 𝜕𝑔(𝑥)O if 𝑓(𝑥) = 𝑔(𝑥), 𝑐𝑜(. ) is the convex hull

Week 2
Bisection method
Method to find a local minimum of a continuously differentiable function 𝑓: ℝ → ℝ in
domain [𝐿, 𝑈], given that 𝑓 + (𝐿) < 0 en 𝑓 + (𝑈) > 0.
,-.
Determine midpoint 𝑀 = ( , evaluate 𝑓 + (𝑀). If 𝑓 + (𝑀) < 0, set 𝐿 = 𝑀, if 𝑓 + (𝑀) > 0, set
𝑈 = 𝑀, if 𝑓 + (𝑀) = 0, set 𝐿 = 𝑀 en 𝑈 = 𝑀. Repeat until range [𝐿, 𝑈] sufficiently small

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper LeonVerweij. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 48298 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,99  2x  verkocht
  • (0)
In winkelwagen
Toegevoegd