100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary of Lectures Research Methods in Finance €7,39   In winkelwagen

Samenvatting

Summary of Lectures Research Methods in Finance

 41 keer bekeken  3 keer verkocht

Summary of all the lectures, organised in a convenient format.

Voorbeeld 4 van de 59  pagina's

  • Ja
  • 29 oktober 2022
  • 59
  • 2022/2023
  • Samenvatting
book image

Titel boek:

Auteur(s):

  • Uitgave:
  • ISBN:
  • Druk:
Alle documenten voor dit vak (2)
avatar-seller
joriswellen
Research Methods in Finance Lectures – University of Groningen – Joris Wellen



Research Methods in Finance
Lectures
Summary of the course’s lectures
Joris Wellen – University of Groningen


Content
Lecture 1 – A Quick Look at OLS..................................................................................................................... 3
1.1 Course Information.........................................................................................................................................3
1.2 Ordinary Least Squares (OLS).........................................................................................................................3

Lecture 2 – OLS Assumptions and Diagnostic Tests.......................................................................................11
2.1 Gauss-Markov Assumptions.........................................................................................................................11
2.2 Detecting Autocorrelation: the Durbin-Watson test....................................................................................13
2.3 Five Cases in which Assumption 4 is Not Satisfied.......................................................................................15

Lecture 3 – Dummies to the Right, Dummies to the Left...............................................................................16
3.1 Dummy Variables.........................................................................................................................................16
3.2 Dummies on the Right..................................................................................................................................16
3.3 Dummies on the Left....................................................................................................................................20

Lecture 4 – Time Series................................................................................................................................ 26
4.1 Introduction..................................................................................................................................................26
4.2 Univariate Time Series..................................................................................................................................26
4.3 Stationarity...................................................................................................................................................27
4.4 Autoregressive Models.................................................................................................................................29
4.5 Testing for Non-Stationarity.........................................................................................................................31
4.6 Financial Bubbles..........................................................................................................................................36

Lecture 5 – Modelling Volatility: ARCH, GARCH and E-GARCH.......................................................................37
5.1 Introduction..................................................................................................................................................37
5.2 Autoregressive Conditional Heteroscedasticity (ARCH) Models..................................................................38
5.3 Generalized ARCH (GARCH) Models.............................................................................................................40
5.4 The E-GARCH Model.....................................................................................................................................44

Lecture 6 – Panel Data................................................................................................................................. 45
6.1 Introduction..................................................................................................................................................45
6.2 Panel Data....................................................................................................................................................45
6.3 Fixed Effects and Random Effects................................................................................................................46
6.4 Random effects.............................................................................................................................................51


1

, Research Methods in Finance Lectures – University of Groningen – Joris Wellen

Lecture 7 – Course Recap............................................................................................................................. 54
7.1 Panel-level Heteroscedasticity.....................................................................................................................54
7.2 Panel-level autocorrelation..........................................................................................................................54
7.3 Clustered Standard Errors............................................................................................................................54
7.4 The Course....................................................................................................................................................55




2

, Research Methods in Finance Lectures – University of Groningen – Joris Wellen



Lecture 1 – A Quick Look at OLS
1.1 Course Information
Exam consists of 3rd of lecture 4.
Steffen prefers short and to-the-point answers
Steffen prefers good tables

1.2 Ordinary Least Squares (OLS)
OLS and stuff
1. A quick overview of the OLS estimator
2. How do we estimate unkown parameters in the regression model?
Ordinary leas squares (OLS).
3. What are the properties of the OLS estimator?
4. No properties without assumptions.
5. When all assumptions are correct, OLS is the best estimator we can
use.
Following supplementary material is available on Nestor and (link)
 Hypothesis testing in linear regression models, R2 and more.

Regression is concerned with describing and evaluating the relationship
between a given variable and one or more other variables.
Examples:
1. How do asset returns vary with their level of market risk?
2. What factors impact the price or demand for a good?

Regression <<>> correlation
Correlation: measures the degree of linear association between two
variables  They are treated systematically.
Regression: The dependent variable, Y, is treated differently than the
independent variable(s), x. y is assumed to be random/stochastic,
whereas x is assumed to be fixed/non-stochastic.

An example a simple regression
Suppose we want to study the relationship between the excess returns on
a fund manager’s portfolio (‘fund XXX’) and the excess return on a market
index.




3

, Research Methods in Finance Lectures – University of Groningen – Joris Wellen




A simple linear regression can easily be extended to include k-1
explanatory variables




In general, we have three types of data:
1. Cross-sectional data
y i=α + β x i + ε i
2. Time-series data
y t =α + β x t + ε t
3. Panel data
y ¿ =α+ β x ¿ + ε ¿

The random error component U t can capture a number of features.
1. We always leave out some determinants of Y t (example: IQ)
2. There may be error in the measurement of Y t that cannot be
modelled
3. Random outside influences on Y t which we cannot model (a terrorist
attack, a natural disaster, a double rainbow.

How did we estimate the line from the picture below?
Y t =α + β x t +u
- The most common method used to fit a line, and estimate α and β is
Ordinary Least Squares (OLS).
- OLS tries to minimize the sum of squared residuals.

Ordinary Least
Squares (OLS):




4

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper joriswellen. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €7,39. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 83662 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€7,39  3x  verkocht
  • (0)
  Kopen