NHST Correlationeel Regressie in Correlationeel → als we Experimenteel
(relatie/samenhang) het éne weten, kunnen we dan iets (causaliteit)
zeggen over het andere, zonder dit te
vragen
Stap 1: Toetskeuze: Pearson of Spearman? Toetskeuze: regressie Bij 2 groepen:
toetskeuze, Hangt hier samen met assumpties Toetskeuze: t-toets voor onafhankelijke groepen (2
hypotheses H0 (altijd =) en H1 (>, < of ≠) opstellen. ≠ wordt groepen, vergelijken op gemiddelde)
bepalen en H0 (altijd =) en H1 (>, < of ≠) opstellen. hier bijna niet gebruikt.
H0 (altijd =) en H1 (>, < of ≠) opstellen.
significantieniveau
Opstellen met Griekse letter rho, ρ Opstellen met Griekse letter bèta, β (bij
(α) kiezen
VB: H0: = 0 en H1: > 0 enkelvoudige regressie en toetsing 2 bij Opstellen met Griekse letter mu, µ (gemiddelde)
multipele regressie) VB: H0 : µDI = µC en H1: µDI > µC
α: meestal .05 VB: H0: gewicht = 0 en H1: gewicht > 0 Of: H0 : µDI - µC = 0 en H1: µDI - µC > 0
Opstellen met Griekse letter rho, ρ2 (bij α: meestal .05
multipele regressie toetsing 1)
VB: H0: 2 = 0 en H1: 2 > 0 Bij meer dan 2 groepen:
Toetskeuze: ANOVA
α: meestal .05
H0 (altijd =) en H1 (>, < of ≠) opstellen.
Opstellen met Griekse letter mu, µ (gemiddelde)
H0 : DI = EI = C en H1 : minimaal één van de
gemiddelden is anders
α: meestal .05
Stap 2: assumpties Mag ik de toetskeuze gebruiken? Mag ik het resultaat vertrouwen? Assumpties voor t toets en ANOVA voor
controleren onafhankelijke groepen:
1. Meetniveau checken 1. Lineaire samenhang tussen predictor en 1. Aselecte steekproef
(interval/ratio) afhankelijke variabele 2. Afhankelijke variabele van interval/ratio
2. Lineaire samenhang checken 2. Geen uitschieters (die te veel invloed meetniveau
hebben) 3. Onafhankelijke waarnemingen/ (twee)
groepen zijn onafhankelijk
, 3. Predictoren en afhankelijke variabele 4. Geen uitschieters (milde uitschieters
minimaal interval meetniveau hebben geen invloed)
4. De predictoren mogen onderling niet te 5. Scores moeten in beide/alle groepen
veel samenhangen ((multi)collinearity) normaal verdeeld zijn (bij n ≥ 30 niet
→ alleen bij multipele regressie problematisch: robuustheid)
5. Spreiding van residuen per x-waarde 6. Scores moeten in beide/alle groepen gelijke
gelijk (homoscedasticity) spreiding hebben (bij n ≥ 30 niet
problematisch: robuustheid + levene’s test)
Bij multipele regressie: ook een
dummyvariabele mogelijk. Twee categorieën,
zoals bij sekse: man 1, vrouw 0
Stap 3: Toetsingsgrootheid bij Pearson = r Bij enkelvoudige regressie en multipele Bij twee groepen:
toetsingsgrootheid (correlation coefficient) regressie toets 2: Toetsingsgrootheid = t-waarde
en p-waarde Toetsingsgrootheid bij Spearman = rs Toetsingsgrootheid b (richtingscoëfficiënt) kan T-waarde uitrekenen door:
hier niet omdat dit afhankelijk is van de 𝑀1−𝑀2
bepalen t=
𝑆𝐸
meetschaal, variabele maat is hier niet handig SE = standaardfout = spreiding
voor. Omrekenen naar een standaardmaat: t- M = steekproefgemiddelden
waarde/t-verdeling. JASP → Independent Samples T-Test → t
Toetsingsgrootheid = t-waarde p-waarde uit JASP halen
SPSS → Coefficients → t JASP → Independent Samples T-Test → p
p-waarde uit SPSS halen JASP kan eenzijdig of tweezijdig toetsen, dus altijd
p-waarde uit SPSS halen goede p-waarde
SPSS → Coefficients → Sig.
Staat er beide twee keer in, maar is
hetzelfde. Bij p-waarde .000 →
p < .001 Let op: p-waarde is bij regressie altijd
tweezijdig, dus bij eenzijdig moet je de p-
waarde delen door twee.
Bij meer dan twee groepen:
Let op: kijken naar B in tabel of deze groter is Toetsingsgrootheid = F-waarde
𝑀𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛
dan 0, dan pas p-waarde delen (assumpties) F = 𝑀𝑆𝑤𝑖𝑡ℎ𝑖𝑛
, Bij multipele regressie toetsing 1: Spreiding binnen (within) de groepen en spreiding
Toetsingsgrootheid = F-waarde tussen (between) de groepen.
Grote F-waarde bij kleine spreiding within en grote
between. → makkelijker om te vergelijken
Kleine F-waarde bij grote spreiding within en kleine
between.
p-waarde uit SPSS halen in ANOVA
Stap 4: conclusie p-waarde > α = H0 meest waarschijnlijk p-waarde > α = H0 meest waarschijnlijk → H0 p-waarde > α = H0 meest waarschijnlijk → H0 niet
trekken over H0 → H0 niet verwerpen, resultaat is niet niet verwerpen, resultaat is niet significant verwerpen, resultaat is niet significant
significant
p-waarde < α = H1 meest waarschijnlijk → H0 p-waarde < α = H1 meest waarschijnlijk → H0
p-waarde < α = H1 meest waarschijnlijk verwerpen, resultaat is significant verwerpen, resultaat is significant
→ H0 verwerpen, resultaat is
significant
Stap 5: VB conclusie: Er is geen significante Bij regressie en multipele regressie toets 2: Bij twee groepen:
inhoudelijke positieve samenhang tussen Is de richtingscoëfficiënt significant groter dan VB conclusie: Ja, kinderen in de directe
conclusie en zelfwaardering en extraversie, r = 0? Ja, dus het is zinvol om regressie te instructiegroep hebben een significant hogere
effectgrootte .283, n = 10, p = .214, éénzijdig. gebruiken. Bij multipele regressie toets 2 alle gemiddelde rekenscore dan kinderen in de
stappen herhalen tot je alle predictoren gehad controlegroep.
bepalen
Maat voor effectgrootte bij correlatie: hebt.
correlatiecoëfficiënt (r) Effectgrootte: kijken naar verschil in
Bij multipele regressie toets 1: Ja, we kunnen groepsgemiddelden óf gestandaardiseerde maat
een significant deel van de variantie van Y gebruiken: Cohen’s d (in JASP)
verklaren door de samenhang met... Namelijk r2