100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Mathematics for Pre-MSc Answers book (EBS002A05) €4,48   In winkelwagen

Antwoorden

Mathematics for Pre-MSc Answers book (EBS002A05)

 407 keer bekeken  4 keer verkocht

Essential Mathematics for Economic Analysis Mathematics for Pre-Msc Course EBS002A05

Voorbeeld 5 van de 77  pagina's

  • 27 april 2016
  • 77
  • 2015/2016
  • Antwoorden
  • Onbekend
Alle documenten voor dit vak (1)
avatar-seller
Afgs
Student’s Manual

Essential Mathematics for
Economic Analysis
th
4 edition


Knut Sydsæter
Peter Hammond
Arne Strøm




For further supporting resources please visit:
www.mymathlab.com/global

, Preface
This student’s solutions manual accompanies Essential Mathematics for Economic Analysis (4th edition, FT
Prentice Hall, 2012). Its main purpose is to provide more detailed solutions to the problems marked ⊂⊃ in the
SM

text. The answers provided in this Manual should be used in combination with any shorter answers provided
in the main text. There are a few cases where only part of the answer is set out in detail, because the rest
follows the same pattern.
We would appreciate suggestions for improvements from our readers, as well as help in weeding out
inaccuracies and errors.

Oslo and Coventry, July 2012

Knut Sydsæter (knutsy@econ.uio.no)
Peter Hammond (hammond@stanford.edu)
Arne Strøm (arne.strom@econ.uio.no)




Contents
1 Introductory Topics I: Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Introductory Topics II: Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Introductory Topics III: Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4 Functions of One Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5 Properties of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6 Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7 Derivatives in Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8 Single-Variable Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
9 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
10 Interest Rates and Present Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
11 Functions of Many Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
12 Tools for Comparative Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
13 Multivariable Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
14 Constrained Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
15 Matrix and Vector Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
16 Determinants and Inverse Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
17 Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70


© Knut Sydsæter, Peter Hammond, and Arne Strøm 2012

, CHAPTER 1 INTRODUCTORY TOPICS I: ALGEBRA 1


Chapter 1 Introductory Topics I: Algebra
1.3
5. (a) (2t −1)(t 2 −2t +1) = 2t (t 2 −2t +1)−(t 2 −2t +1) = 2t 3 −4t 2 +2t −t 2 +2t −1 = 2t 3 −5t 2 +4t −1
(b) (a + 1)2 + (a − 1)2 − 2(a + 1)(a − 1) = a 2 + 2a + 1 + a 2 − 2a + 1 − 2a 2 + 2 = 4. Alternatively,
apply the quadratic identity x 2 + y 2 − 2xy = (x − y)2 with x = a + 1 and y = a − 1 to obtain
(a + 1)2 + (a − 1)2 − 2(a + 1)(a − 1) = [(a + 1) − (a − 1)]2 = 22 = 4.
(c) (x + y + z)2 = (x + y + z)(x + y + z) = x(x + y + z) + y(x + y + z) + z(x + y + z) =
x 2 + xy + xz + yx + y 2 + yz + zx + zy + z2 = x 2 + y 2 + z2 + 2xy + 2xz + 2yz (d) With a = x + y + z
and b = x − y − z, (x + y + z)2 − (x − y − z)2 = a 2 − b2 = (a + b)(a − b) = 2x(2y + 2z) = 4x(y + z).
13. (a) a 2 + 4ab + 4b2 = (a + 2b)2 by the first quadratic identity. (d) 9z2 − 16w2 = (3z − 4w)(3z + 4w),
according to the difference-of-squares formula. (e) − 15 x 2 + 2xy − 5y 2 = − 15 (x 2 − 10xy + 25y 2 ) =
− 15 (x − 5y)2 (f) a 4 − b4 = (a 2 − b2 )(a 2 + b2 ), using the difference-of-squares formula. Since
a 2 − b2 = (a − b)(a + b), the answer in the book follows.

1.4
1 1 x+2 x−2 x+2−x+2 4
5. (a) − = − = = 2
x−2 x+2 (x − 2)(x + 2) (x + 2)(x − 2) (x − 2)(x + 2) x −4
(b) Since 4x + 2 = 2(2x + 1) and 4x 2 − 1 = (2x + 1)(2x − 1), the lowest common denominator (LCD)
is 2(2x + 1)(2x − 1). Then
6x + 25 6x 2 + x − 2 (6x + 25)(2x − 1) − 2(6x 2 + x − 2) 42x − 21 21
− = = =
4x + 2 4x − 1
2 2(2x + 1)(2x − 1) 2(2x + 1)(2x − 1) 2(2x + 1)
18b2 a 18b2 − a(a − 3b) + 2(a 2 − 9b2 ) a(a + 3b) a
(c) 2 − +2= = =
a − 9b 2 a + 3b (a + 3b)(a − 3b) (a + 3b)(a − 3b) a − 3b
1 1 (a + 2) − a 2 1
(d) − = = =
8ab 8b(a + 2) 8ab(a + 2) 8ab(a + 2) 4ab(a + 2)
 
2t − t 2 5t 2t t (2 − t) 3t −t (t − 2) 3t −3t 2
(e) · − = · = · =
t +2 t −2 t −2 t +2 t −2 t +2 t −2 t +2
   
a 1 − 2a 1
a− 1
a 1 − 1
(f) = 1 2 = 4a − 2, so 2 − 2a
= 2 − (4a − 2) = 4 − 4a = 4(1 − a)
0.25 4
0.25
2 1 2(x + 1) + x − 3x(x + 1) 2 − 3x 2
6. (a) + −3= =
x x+1 x(x + 1) x(x + 1)
t t t (2t − 1) − t (2t + 1) −2t
(b) − = = 2
2t + 1 2t − 1 (2t + 1)(2t − 1) 4t − 1
3x 4x 2x − 1 3x(x − 2) + 4x(x + 2) − (2x − 1) 7x 2 + 1
(c) − − = = 2
x+2 2−x (x − 2)(x + 2) (x − 2)(x + 2) x −4
   
1 1 1 1 1 1 1 1
+ + xy − 2 − 2 · x2y2
x y x y y+x x2 y x2 y y2 − x2
(d) = = = x + y (e) =  = 2
1 1 1 1 1 1 1 y + x2
· xy + + · x 2y2
xy xy x2 y2 x2 y2
(f) To clear the fractions within both the numerator and denominator, multiply both by xy to get
a(y − x) y−x
=
a(y + x) y+x


© Knut Sydsæter, Peter Hammond, and Arne Strøm 2012

,2 CHAPTER 1 INTRODUCTORY TOPICS I: ALGEBRA

1 
1 −2
 1 −2
8. (a) 1
4 − 1
5 = 5
20 − 4
20 = 1
20 , so 4 − 5 = 20 = 202 = 400
n n·n n(n − 1) − n2n2 −n
(b) n − =n−   = n − = =
1 1 n−1 n−1 n−1
1− 1− ·n
n n
1 1 1 1 1 u
(c) Let u = x p−q . Then + = + = + =1
1 + x p−q 1 + x q−p 1 + u 1 + 1/u 1+u 1+u
 
1 1
+ (x 2 − 1)
x − 1 x2 − 1 (x + 1) + 1 x+2 1
(d)   = 3 = =
2 x − x − 2x + 2 (x + 2)(x − 2x + 1)
2 (x − 1)2
x− (x 2 − 1)
x+1
1 1
− 2
1 1 x − (x + h)
2 2 −2xh − h 2
(x + h) 2 x −2x − h
(e) − 2 = = 2 , so = 2
(x + h) 2 x x (x + h)
2 2 x (x + h) 2 h x (x + h)2
10x 2 2x
(f) Multiplying denominator and numerator by x 2 − 1 = (x + 1)(x − 1) yields = .
5x(x − 1) x−1

1.5
5. The answers given in the main text for each
√ respective
√ part
√ emerge
√ after multiplying
√ both numerator
√ √
and denominator by the following: (a) 7 − 5 (b) 5 − 3 (c) 3 + 2 (d) x y − y x
√ √ √
(e) x + h + x (f) 1 − x + 1.
2
12. (a) (2x )2 = 22x = 2x if and only if 2x = x 2 , or if and only if x = 0 or x = 2. (b) Correct because
a p−q = a p /a q . (c) Correct because a −p = 1/a p . (d) 51/x = 1/5x = 5−x if and only if 1/x = −x
or −x 2 = 1, so there is no real x that satisfies the equation. (e) Put u = a x and v = a y , which reduces
the equation to uv = u + v, or 0 = uv − u − v = (u − 1)(v − 1) − 1. This is true only for special values
of u and v and so for special values of x and y. In particular, the equation is false when x = y = 1.
√ √
(f) Putting u = x and v = y reduces the equation to 2u · 2v = 2uv , which holds if and only if
uv = u + v, as in (e) above.

1.6
3x + 1 3x + 1 3x + 1 − 2(2x + 4) −x − 7
4. (a) 2 < has the same solutions as − 2 > 0, or > 0, or >0
2x + 4 2x + 4 2x + 4 2x + 4
A sign diagram reveals that the inequality is satisfied for −7 < x < −2. A serious error is to multiply the
inequality by 2x + 4, without checking the sign of 2x + 4. If 2x + 4 < 0, mulitiplying by this number
will reverse the inequality sign. (It might be a good idea to test the inequality for some values of x. For
example, for x = 0 it is not true. What about x = −5?)
120 480 − 3n
(b) The inequality is equivalent to ≤ 0.75, or ≤ 0. A sign diagram reveals that the
n 4n
inequality is satisfied for n < 0 and for n ≥ 160. (Note that for n = 0 the inequality makes no sense. For
n = 160, we have equality.) (c) Easy: g(g − 2) ≤ 0 etc. (d) Note that p2 − 4p + 4 = (p − 2)2 , and
p+1
the inequality reduces to ≥ 0. The fraction makes no sense if p = 2. The conclusion follows.
(p − 2)2
−n − 2 −n − 2 − 2n − 8 −3n − 10
(e) The inequality is equivalent to − 2 > 0, i.e. > 0, or > 0, etc.
n+4 n+4 n+4
(f) See the text and use a sign diagram. (Don’t cancel x 2 . If you do, x = 0 appears as a false solution.)

© Knut Sydsæter, Peter Hammond, and Arne Strøm 2012

, CHAPTER 1 INTRODUCTORY TOPICS I: ALGEBRA 3

5. (a) Use a sign diagram. (b) The inequality is not satisfied for x = 1. If x = 1, it is obviously satisfied
if and only x + 4 > 0, i.e. x > −4 (because (x − 1)2 is positive when x  = 1). (c) Use a sign diagram.
(d) The inequality is not satisfied for x = 1/5. If x  = 1/5, it is obviously satisfied for x < 1.
(e) Use a sign diagram. (Note that (5x − 1)11 has the same sign as 5x − 1.)
3x − 1 3x − 1 −(1 + x 2 )
(f) > x + 3 if and only if − (x + 3) > 0, i.e. > 0, so x < 0. (1 + x 2 is
x x x
x−3 x−3 −2x(x + 2)
always positive.) (g) > 2x − 1 if and only if − (2x − 1) < 0, i.e. < 0.
x+3 x+3 x+3
Then use a sign diagram. (h) x 2 − 4x + 4 = (x − 2)2 , which is 0 for x = 2, and strictly positive for
x = 2. (i) x 3 + 2x 2 + x = x(x 2 + 2x + 1) = x(x + 1)2 . Since (x + 1)2 is always ≥ 0, we see that
x 3 + 2x 2 + x ≤ 0 if and only if x ≤ 0.


Review Problems for Chapter 1

5. (a) (2x)4 = 24 x 4 = 16x 4 (b) 2−1 − 4−1 = 1
2 − 1
4 = 41 , so (2−1 − 4−1 )−1 = 4.
(c) Cancel the common factor 4x 2 yz2 . (d) −(−ab3 )−3 = −(−1)−3 a −3 b−9 = a −3 b−9 , so
a 5 · a 3 · a −2 a6
[−(−ab3 )−3 (a 6 b6 )2 ]3 = [a −3 b−9 a 12 b12 ]3 = [a 9 b3 ]3 = a 27 b9 (e) −3 · a 6
= 3
= a3
   3  3 −3 a a
x 3 8 −3 x 8 −3 x
(f) · −2 = · −2 = = (x 5 )−3 = x −15
2 x 8 x x −2
√ √ √  √ √ √ √ √
9. All are straightforward,
√ except (c), (g), and (h): (c) − 3 3 − 6 = −3 + 3 6 = −3 + 3 3 2
= −3 + 3 2 (g) (1 + x + x 2 + x 3 )(1 − x) = (1 + x + x 2 + x 3 ) − (1 + x + x 2 + x 3 )x = 1 − x 4
(h) (1 + x)4 = (1 + x)2 (1 + x)2 = (1 + 2x + x 2 )(1 + 2x + x 2 ) and so on.

12. (a) and (b) are easy. (c) ax + ay + 2x + 2y = a(x + y) + 2(x + y) = (a + 2)(x + y)
(d) 2x 2 − 5yz + 10xz − xy = 2x 2 + 10xz − (xy + 5yz) = 2x(x + 5z) − y(x + 5z) = (2x − y)(x + 5z)
(e) p2 − q 2 + p − q = (p − q)(p + q) + (p − q) = (p − q)(p + q + 1) (f) u3 + v 3 − u2 v − v 2 u =
u2 (u − v) + v 2 (v − u) = (u2 − v 2 )(u − v) = (u + v)(u − v)(u − v) = (u + v)(u − v)2 .

s s s(2s + 1) − s(2s − 1) 2s
16. (a) − = = 2
2s − 1 2s + 1 (2s − 1)(2s + 1) 4s − 1
x 1−x 24 −x(x + 3) − (1 − x)(x − 3) − 24 −7(x + 3) −7
(b) − − = = =
3−x x + 3 x2 − 9 (x − 3)(x + 3) (x − 3)(x + 3) x−3
y−x y−x 1
(c) Multiplying numerator and denominator by x 2 y 2 yields 2 = = .
y −x 2 (y − x)(y + x) x+y

17. (a) Cancel the factor 25ab. (b) x 2 − y 2 = (x + y)(x − y). Cancel x + y. (c) The fraction can be
(2a − 3b)2 2a − 3b 4x − x 3 x(2 − x)(2 + x) x(2 + x)
written as = . (d) = =
(2a − 3b)(2a + 3b) 2a + 3b 4 − 4x + x 2 (2 − x) 2 2−x

25. Let each side have length s, and let the area be K. Then K is the sum of the areas of the triangles
ABP , BCP , and CAP in Fig. SM1.R.25, which equals 21 sh1 + 21 sh2 + 21 sh3 = K. It follows that
h1 + h2 + h3 = 2K/s, which is independent of where P is placed.

© Knut Sydsæter, Peter Hammond, and Arne Strøm 2012

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper Afgs. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €4,48. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 67096 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€4,48  4x  verkocht
  • (0)
  Kopen