100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary Beschrijvende Statistiek Hoorcollege 7 (H6.1-6.2) €2,99   In winkelwagen

Samenvatting

Summary Beschrijvende Statistiek Hoorcollege 7 (H6.1-6.2)

 2 keer bekeken  0 keer verkocht

Dit is een samenvatting voor de leerstof van hoorcollege 7 van Beschrijvende Statistiek in de pre-master Orthopedagogiek aan de Universiteit van Amsterdam. Het behandelt hoofdstuk 6.1 en 6.2 van Statistics van Algresti & Franklin.

Voorbeeld 2 van de 7  pagina's

  • Nee
  • H6.1 & 6.2
  • 12 februari 2023
  • 7
  • 2022/2023
  • Samenvatting
book image

Titel boek:

Auteur(s):

  • Uitgave:
  • ISBN:
  • Druk:
Alle documenten voor dit vak (39)
avatar-seller
sevendeboer
6.1. Summarizing possible outcomes and their
probabilities
Random variable = numerical measurement of the outcome of a random phenomenon. Often, the
randomness results from the use of random sampling or a randomized experiment to gather
the data.

- When referring to the random variable itself, rather than a particular value, we’ll use a
capital letter. Such as X.
o X = number of heads in three flips of a coin denotes the random variable
o x = 2 is one of its possible values, as is x=3 or x=0
- because a random variable refers to the outcome of a random phenomenon, each possible
outcome has a specific probability of occurring.
- The probability distribution of a random variable specifies its possible values and their
probabilities.
o An advantage of a variable being a random variable is that it’s possible to specify
such probabilities. Without randomness, we would not be able to predict the
probabilities of the possible outcomes in the long run.

When a random variable has separate possible values, such as 0, 1, 2, 3 for the number of heads in
three flips of a coin, it is called discrete.

The probability distribution of a discrete random variable assigns a probability to each possible
value. Each probability falls between 0 and 1, and the sum of the probabilities of all possible values
equals 1.




Random variables can also be continuous, having possible values that form an interval rather than a
set of separate numbers.

The mean of a probability distribution

- To describe characteristics of a probability distribution, we can use any of the numerical
summaries defined in chapter 2 (mean, median, quartiles and standard deviation).
o It is most common to use the mean to describe the center and the standard
deviation to describe the variability.
- Numerical summaries of populations are called parameters. You can think of a population
distribution as merely being a type of probability distribution – one that applies for selecting
a subject at random from a population. Like numerical summaries of populations, numerical
summaries of probability distributions are called parameters.
o Typically, parameters are denoted by Greek letters.
 The mean of a probability distribution is denoted by μ (“mu”- mew)
 The standard deviation of a probability distribution is denoted by 𝜎 (sigma)

, - The mean of a probability distribution for a discrete random variable is μ=Σ x × P( x),
where the sum is taken over all possible values of x.
o Each possible value of x is multiplied by its probability P(x) and is then added up.

The mean μ=Σ x × P(x) is called the weighted average: values of x that are more likely, receive
greater weight P(x).

- This formula for the mean of a probability distribution generalized the ordinary formula for
the mean, to allow for outcomes that are not equally likely.
- The mean μ of the probability distribution of a random variable X is also called the expected
value of X.
o The expected value reflects not what we’ll observe in a single observation, but
rather what we expect for the average in a long run of observations.

Summarizing the variability of a probability distribution

- The standard deviation of a probability distribution, denoted by σ , measures the variability
from the mean.
o Larger values for σ correspond to greater variability.
o Roughly, σ describes how far values of the random variable fall, on the average,
from the expected value of the distribution.

Probability distributions of categorical variables

- A random variable is defined to be a numerical measurement of the outcome of a random
phenomenon. However, for categorical variables having only two categories, it’s often useful
to represent the two possible outcomes by the numerical values 0 and 1.
o The mean is equal to the probability of success. For random variables that have
possible values 0 and 1, the mean is the probability of the outcome coded as 1.

Probability distributions of continuous random variables

- A random variable is called continuous when its possible values form an interval.
- Probability distributions of continuous random variables assign probabilities to any interval
of the possible values.
- The probability that a random variable falls in any particular interval is between 0 and 1 and
the probability of the interval that contains all the possible values equals 1.
- As the number of intervals increases, with their width narrowing, the shape of the histogram
gradually approaches a smooth curve.

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper sevendeboer. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €2,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 83662 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€2,99
  • (0)
  Kopen