100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary Getting Started with SPSS MRM 2 €6,49
In winkelwagen

Samenvatting

Summary Getting Started with SPSS MRM 2

 8 keer bekeken  1 keer verkocht

In this document you can find the full notes of the 8week program MRM 2. This is from the pre-master / premaster of the EP Management studies (EPMS) program of the Business school of the University of Amsterdam (UVA).

Voorbeeld 2 van de 7  pagina's

  • 23 februari 2023
  • 7
  • 2022/2023
  • Samenvatting
Alle documenten voor dit vak (1)
avatar-seller
basschaap
Notes MRM 2
There are open book tests and multiple choice questions to help prepare for your exam.

The test will be open ended questions seeing how you can interpret.

Moderator is the interaction effect, for example communication skills has a positive effect on
student satisfaction. They are strengthening each other.

Mediation / mediator is the how, how does the independent variable have an effect on the
dependable variable.

Arrows always are beneath the arrow and go from independent to dependent variable.

ANOVA

The samples need to be mutually exclusive.

One-way ANOVA has one predicter variable/ Independent variable

The alternative hypothesis is there is at least one difference in the dependent variable mean score
between the PV categories. Keep that in mind.

F-test is the test statistic for this test. F-values look at explaining variability. F-distribution is also
different from a T-distribution.

Variability is split up in two groups: Difference between groups (explained) vs differences within
groups (unexplained)

ANOVA compares the variation between the groups.

There is the Total sum of squares = Model sum of squares + Residual sum of squares

R2 or R squared is the proportion of total variance. Equals to the variability explained by the model /
total variability. This is not a official statistic.

A proper statistic is the F-test. The F ratio = explained variability / Unexplained.

There are different DF between these sums, u divide the sum by the df. For getting into the Mean
squares. U calculate the degrees of freedom by:

SSm = K – 1

K is amount of groups

SSr = n – k

N = number of units / data points per group

K = groups

F value like T value can be looked up in a table.

Multiple comparisons cause artificial inflation of alpha. The chance increases because you take the
5% E.G. three times (family-wise error rate). To correct for this we adjust for test at the end.

, We choose Bonferroni for this course, the alpha gets divided over all comparions. E.G. if there are 5
comparisons each gets 1%.



There are other types of ANOVA when some assumptions are not met.

Notes week 2 Interaction & Factorial ANOVA

N-way independent Anova has 2 or more PV’s. N stands for the amount of PV.

The N-way adds more realism and control to the analysis and they give a clearer view of the cause
and effect.

The interaction effect (moderation)

- The effect of one PV on the OV is moderated by another PV



Interaction helps with various ‘problems’ in research, interaction helps resolve conflicts between
earlies theories/results for example.

When looking at ANOVA for factorial design the SSm or sum of squares of your model gets divided
over three sums of Square. Namely SSa, SSb and SSaxb.

Factorial ANOVA in SPSS: Analyze > GLM > Univariate. Check descriptive stats, homogeneity test and
estimates of effect size.

Partial N2 (Eta) effect size of the individual PV’s Interactions.

We use the corrected model and the corrected total.

Then look at pairwise comparisons for main effects.

Plotting interactions

analyze > GLM > Plots

Main effect on the horizontal, second predictor variable we put on separate Lines.

To check If the interaction effect is significant we do the Simple Effects Test (a checkable box when
analyzing in SPSS). This spots out a table with Sig. in there.

Week 3 Regression

Regression is like doing ANOVA but then with quantitative data. We are looking at how much of the
variance in our data can be explained by our model.

The alpha (intercept or startin point) and beta (slope). In y = ax + b. Alpha would be B and beta
would be A, X remains the same.

R2 is the amount of variance that gets explained by the model. This is calculated by dividing the SS M
by the SST. This is interpreted as percentage of total variation.

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper basschaap. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 58716 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,49  1x  verkocht
  • (0)
In winkelwagen
Toegevoegd