100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary of All Lectures + Practice Materials €5,92   In winkelwagen

Samenvatting

Summary of All Lectures + Practice Materials

 60 keer bekeken  2 keer verkocht

In this document you will find a full overview of everything that is mentioned in the lectures and lecture slides (plus examples in italics) and other relevant materials mentioned on Canvas!

Voorbeeld 3 van de 26  pagina's

  • 8 maart 2023
  • 26
  • 2020/2021
  • Samenvatting
Alle documenten voor dit vak (7)
avatar-seller
sachalena
Lecture 1 - Introduction, Data Exploration, and Visualization
What you observe = True value + Sampling error + Measurement error + Statistical error
→ If any of these is messed up, results are biased and recommendations are wrong

Statistics ​estimate ​parameters
→ ​Statistics​: characteristics of the sample
→ ​Parameters​: characteristics of the population

Target population​ ​(voters)​ → ​Coverage error​ → ​Frame population​ ​(everyone with a telephone)​ →
Sample error​ → ​Sample population​ (​ random digit)​ → ​Non-response error​ → ​Respondents​ ​(accept
the call)

Post-stratification weights​: make the sample closer to the population

Non-metric scales​: outcomes are categorical (labels) or directional, they can only measure the
direction of the response ​(yes/no)
→ ​Nominal scale​: number serves only as label or tag for identifying or classifying objects in ​mutually
exclusive​ and​ collectively exhaustive​ categories ​(SNR, gender)
→ ​Ordinal scale​: numbers are assigned to objects to indicate the relative positions of some characteristic of
objects, but not the magnitude of difference between them ​(brand preference ranking)

Metric (continuous) scales​: not only measure the direction or classification, but the intensity as
well ​(strongly agree, somewhat disagree)
→ ​Interval scale​: numbers are assigned to objects to indicate the relative positions of some characteristic of
objects with differences between objects being comparable; zero point is arbitrary ​(Likert scale, satisfaction
scale, perceptual constructs, temperature (Fahrenheit/Celsius)
→ ​Ratio scale​: most precise scale; absolute zero point ​(weight, height, age, income, temperature (Kelvin))

In ​summated scales​ ​(satisfaction with purchase experience, Likert scale)​, more than one question
is needed to capture all facets (to reduce a measurement error).

Validity​: does it measure what it’s supposed to measure
→ ​(Face) validity​: do these coefficients make sense? (do the effect sizes and signs give
plausible model results?)

Reliability​: is it stable?
→ How much do these results change if …
→ we add additional control variables to the model
→ we take away some observations ​(outliers)
→ we estimate the same model on a new dataset

Type I error​: null is falsely accepted
Type II error​: null is falsely rejected

,p-value​: probability of the observed data or statistic (or more extreme) given that the null
hypothesis is true (not a good measure of evidence)

Data preparation​: explore data before running any model
→ Recode missing observations ​(9999=missing)
→ Reverse code negatively worded questions
→ Check that variables have the correct range/are not invalid
→ Check mutual consistency ​(age=18, date of birth=4/30/1901)

Data visualization​: explore the data, understand/make sense of the data, communicate results

Choosing the right chart type
→ Showing the composition or distribution of one variable
→ Comparing data points or variables across multiple subunits

, Lecture 2 - ANOVA
Step 1: Defining Objectives
ANOVA​: testing if there are differences in the mean of a ​metric DV​ across different levels of one or
more ​non-metric IVs

​ ​Interval scale​ as it has no natural zero point, a
‘’How much do you like this ad? 1-2-3-4-5-6-7’’ →
scale from -3 to +3 wouldn’t have made a difference

ANOVA allows for more than 2 levels, a ​t-test​ doesn’t (1 IV with 2 levels)

Step 2: Designing The ANOVA
Reality
Null Reality
Decision Null 1-α β
Alternative α 1-β

p-value​:​ probability of getting data/a statistic that is as extreme or more extreme if the null
hypothesis is true
→ If the null is true in reality, what is the chance that we see the current data (or data even further apart
from what would be expected under the null)
→ If the p-value is low, data are unlikely according to the null, and the null can be rejected (low chance of
type I error​)
→ For a ​type I error​, an error rate of 5% is typically allowed (α=0.05, reject the null if p-value < α)
→ For a ​type II error​, an error rate of 20% is typically allowed
→ Power of a study (1 - P(Null ] Alt) is set to 0.8
→ In 80% of the cases when the null is not true, you can correctly reject it

Power​ depends on
→ Effect size
→ Sample size
→ α is typically fixed
Thus, for a large effect, a small sample is sufficient to find the effect, and for a small effect, you
need a large sample to find the effect.

Step 2.1: Sample Size
Inputs to determine ​sample size
→ Effect size
→ Desired power
→ Alpha (α)

Cohen’s f (signal-to-noise ratio) = Standard deviation of group means / Common standard
deviation = Signal / Noise​ (not important, only to illustrate)
→ f=0.1 is a small effect, f=0.25 is a medium effect, f=0.5 is a large effect (mostly small to medium)

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper sachalena. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €5,92. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 75632 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€5,92  2x  verkocht
  • (0)
  Kopen