Hierin een samenvatting van het Wiskunde vak in het vierde kwartaal, linaire algebra 2, van de studie Werktuigbouwkunde op de TU Delft
Bevat uitleg over: Determinanten, eigenwaarden, eigenvectoren, complexe eigenwaarden, differential equations, quadratic forms, discrete dynamical systems, gramm-s...
17 en 18 Determinanten en applicatie
Determinant 2x2: 𝑎𝑑 − 𝑏𝑐
Determinant 3 x 3 en hoger (enkel vierkante matrixen) → Cofactor expansion
Dit kan je langs enkele rij of kolom doen (kies kol/rij met meeste 0)
𝑛 𝑟𝑖𝑗 + 𝑛 𝑐𝑜𝑙
(− 1) * 𝑎𝑛𝑚 * 𝐷𝑒𝑡(𝑚𝑎𝑡𝑟𝑖𝑥 𝑑𝑎𝑡 𝑜𝑣𝑒𝑟𝑏𝑙𝑖𝑗𝑓𝑡 𝑛𝑎 𝑛 𝑒𝑛 𝑚 𝑤𝑒𝑔 𝑡𝑒 𝑠𝑡𝑟𝑒𝑝𝑒𝑛) + ...... 𝑒𝑡𝑐 𝑙𝑎𝑛𝑔𝑠 𝑑𝑒 𝑟𝑖𝑗/𝑐𝑜𝑙
Speciale matrix: triangular matrices (driehoekje nullen links onder of rechtsboven):
Det=product van de diagonale waarden.
Wat is een determinant buiten het feit dat je hier inverses mee kan uitrekenen?
Bepaalde transformaties zorgen ervoor dat een oppervlak uitgerekt wordt (shear
transformations), de determinant van deze transformatie matrix vertelt jou eigenlijk met
welke scalar het originele oppervlak (waar je de matrix op loslaat, dus eig verzameling
vectoren) vergroot/verkleint wordt! Als je dit doet voor R3 en hoger, heb je het dus over
volumevergroting, geen oppervlaktes. hoe een rechthoek een parallellogram wordt noem je
dit in 3D een parallelepiped genoemd.Hier kan je ook eigenwaarden mee berekenen, zie hs
19.
19 Eigenwaarden en Eigenvectoren
Check of dit een eigenvector is: Av=λv, dus matrix A loslaten op een vector zorgt voor een
veelvoud van diezelfde vector, hij is met de eigenwaarde langer/korter geworden.
λ → Det(A-λI)=0 (dit is de characteristic equation)
Dit betekent eigenlijk dat we een matrix A-lambda gaan vinden waarvoor hij niet
inverteerbaar is.
Als je deze vergelijking opgelost kan je meerdere keren dezelfde λ vinden, dit geeft aan wat
de algebraic multiplicity is.
Geometric multiplicity: geeft aan hoeveel eigenvectoren corresponderen met dezelfde
eigenwaarde λ. Je kijkt dus naar dim( Null(A-λI))
De geometrische multipliciteit kan nooit hoger zijn dan de algebraic multiplicity.
De som van de algebraïsche multipliciteiten van de eigenwaarden geeft n terug (A=nxn)
Als voor elke eigenwaarde de Geo mult=alg mult, dan is A diagonaliseerbaar (HS 20)
Set eigenvectoren zijn altijd linearly independent
Bij de triangular matrices staat de eigenwaarde op de diagonaal !!!
A is alleen inverteerbaar als:
- 0 is geen eigenwaarde
- De determinant is niet nul
Rekenregels rond determinanten
- Det(AB)=Det(A)*Det(B)
- Det(A^T)=Det(A)
, - Rij optellen bij een andere rij verandert Det(A) niet
- 2 rijen verwisselen maakt Det(A) = -Det(A)
- Een rij vermenigvuldigen met een scalar r geeft, Det(A)=r* Det(A) [Det(rA) is fout!]
20 Diagonalization
Similarity
−1
Als A en B nxn matrixen zijn, dan zijn deze similar als A te schrijven is als 𝐴 = 𝑃𝐵𝑃
Als twee matrices similar zijn, dan hebben ze dezelfde characteristic polynomial, en dus ook
dezelfde eigenwaarden (inclusief hun geo-multipliciteit).
Een matrix is alleen diagonaliseerbaar als deze n linearly independent eigenvectoren heeft.
Dan kan je een eigenvector basis vormen.
−1
Een matrix A is diagonaliseerbaar als A (nxn) te schrijven is als 𝐴 = 𝑃𝐷𝑃
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper carmenzaky1. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €4,89. Je zit daarna nergens aan vast.