100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Collegeaantekeningen leren en geheugen (5102LEGE9Y) Week 7 €4,99   In winkelwagen

College aantekeningen

Collegeaantekeningen leren en geheugen (5102LEGE9Y) Week 7

 5 keer bekeken  0 keer verkocht

Een uitgebreide en overzichtelijke samenvatting van de hoorcolleges uit week 7 voor deeltentamen 2 van het vak Leren en Geheugen van de studie Psychobiologie aan de UvA ().

Voorbeeld 4 van de 43  pagina's

  • 8 juli 2023
  • 43
  • 2021/2022
  • College aantekeningen
  • Lansink
  • De hoorcolleges uit week 7
book image

Titel boek:

Auteur(s):

  • Uitgave:
  • ISBN:
  • Druk:
Alle documenten voor dit vak (22)
avatar-seller
Annabel2703
HC aantekeningen Week 7
Quizlet link: https://quizlet.com/Annabel2703/folders/leren-en-geheugen/sets



Inhoud
College 17: Computational models of learning and memory (part II) .............................................................................. 2
College 18: De ziekte van Alzheimer en dementie ......................................................................................................... 15
College 19: Geheugen consolidatie & reorganisatie ....................................................................................................... 32

,College 17: Computational models of learning and memory (part II)
➢ Synapsen belangrijk voor leren, dus dat moet je goed kunnen simuleren
❖ Recap:
➢ basic ideen voor modelling, hoe
kunnen we individuele neuronen
modelleren op verschillende
niveaus?
➢ We covered 3 models, 3 levels:
Hodgkin-Hodgkin-Huxley (most
biophysical, currents), Izhikevich
(little more simplified), Leaky
integrate-and-fire model (most
simple but useful for basic
features, used during workshop).
❖ How are models of learning implemented
in these neural network models?

Models of learning and memory

❖ Now that we can simulate a neuron, we can start looking at learning rules
❖ We can classify the learning strategies of the brain in three main categories, which can also be used in
artificial approaches of learning.
➢ Unsupervised learning: We can classify the learning strategies of the brain in three main
categories,
▪ input from outside world -> activity between input and layer x is the main thing that
changes the output?
▪ nothing that oversees how the network learns and performs, free, unsupervised





➢ Supervised learning: the neural network receives input from the outside world and also the
desired output, so that the network can change its synaptic weights to reach such output.
▪ input en output vergelijken -> weights aanpassen





➢ Reinforcement learning: the neural network receives input from the outside world, and a
reward/punishment teaching signal which bias the learning towards a desired output.
▪ extension van supervised learning, teaching signal. Het signaal is niet de desired outpu
die we willen, niet een erg specifiek signaal maar een beloning/straf.

, ▪
▪ (Ik vraag me af: krijg je dus als netwerk alleen te horen ‘je deed het verkeerd’ of krijg je ook een richting
aangegeven zoals ‘je uitkomst was te laag’, of is dat meer supervised learning?)
❖ Biological examples:
➢ Unsupervised learning: for example, receptive fields.
➢ Supervised learning: links with biological mechanisms still unclear. A good candidate is
learning in the cerebellum (teaching signals).
➢ Reinforcement learning: classical conditioning.




Unsupervised learning

❖ Unsupervised learning is a learning process in which synaptic weights change as a function of the
inputs (and internal activity) only.
❖ Simplicity and plasticity -> good for experiments, computational pov
❖ It is therefore easy to map this process to the learning of biological neural systems and changes in
biological synapses.
❖ The first biological principle of synaptic changes associated with learning is the Hebb’s principle:
“Neurons that fire together, wire together.
❖ “Neurons that fire together, wire together”- Donald Hebb




➢ ->




➢ -> ->




➢ ->




➢ ->
➢ Synaptisch weight increases

, ➢ “WHEEL” reminds us of the car
➢ Activation of neuron -> activation of neuron connected by stronger synapse
❖ This principle allows to recover neural activity patterns, or neural assemblies, from incomplete or
noisy data, leading to the concept of associative memory.
➢ This happens without any kind of supervision from external agents.





❖ We can consider a variety of learning rules to train neural networks in an unsupervised way.
➢ Some of these rules come from biology (i.e. refined versions of the Hebb rule, or other different
rules also found in synapses).
➢ Other rules can be considered on the basis of their theoretical and computational properties
(such as stability, simplicity or fast training times).
➢ We will cover several classical learning rules used in unsupervised learning
❖ thepricial principes for guidelines
❖ The BCM rule:
➢ formulated by Elie Bienenstock, Leon Cooper and Paul Munro in 1982. It attempts to explain
learning in the visual system.
➢ This rule is an extension of the Hebb rule (but for continuous values) which solves two
important aspects of the stability problem of the Hebb rule. (Hebb would make the synapses
either stronger and stronger, or weaker and weaker, but we want something more stable)
➢ More precisely, the BCM rule adds

▪ (i) a leaky term to incorporate depression and make unused synapses weaker,
▪ and (ii) a sliding threshold to balance potentiation with depression and prevent

runaway increase of synaptic weights
➢ Equation:





▪ temporal evolution of wij: synaptic weight between neurons i
and j
▪ with φ(x) is the sigmoidal function, which imposes a cap in the increase of the synaptic
weight.
▪ This function introduces a sliding threshold (𝜃!), which provides the stability factor
missing in the standard Hebb rule.
▪ The leaky term provides a long-term depression mechanism

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper Annabel2703. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €4,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 82191 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€4,99
  • (0)
  Kopen