100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
MAT22306 Samenvatting Quantitative Research Methodology and Statistics (Colleges) €2,99
In winkelwagen

Samenvatting

MAT22306 Samenvatting Quantitative Research Methodology and Statistics (Colleges)

1 beoordeling
 289 keer bekeken  11 keer verkocht

Samenvatting van alle lectures. Bevat de belangrijkste formules.

Voorbeeld 3 van de 11  pagina's

  • 9 juli 2017
  • 11
  • 2016/2017
  • Samenvatting
Alle documenten voor dit vak (1)

1  beoordeling

review-writer-avatar

Door: leonkristian • 5 jaar geleden

avatar-seller
mk_mme
Quantitative
Non-random sampling strategies

- Accidental/convenience sampling: the

Research -
researcher takes a sample of units wherever
he can find them
Quota sampling: the researcher takes a

Methodology and certain amount of units per category or
value of the selection variable


Statistics
- Volunteer sampling: the researcher asks
volunteers, usually with some specific
characteristics
- Handpicked/purposive/expert sampling: the
researcher selects who can provide the best
1.1 information to achieve the study objectives
- Chain/snowball sampling: the researcher
Research Designs:
follows up contacts mentioned by other
- Experiment: Researcher has control over respondents
factors.
Measurement levels of variables
- Cross-sectional: no manipulation of
independent variable, standardized
- Nominal: mare labels for values, no order
questionnaire used. Also large sample (e.g.
(e.g. sex)
cross section of population).
- Ordinal: ordered values with unequal steps
- Case study: In-depth study of problem. Not
(e.g. position top 10 most livable cities,
very statistic. Broad field narrowed down
educational level)
into easily researchable examples.
- Interval: ordered values with equal steps,
no natural zero (e.g. degrees Celsius, years
Random sampling strategies:
on calendar pages etc.)
- Simple random sampling - Ratio: ordered values with equal steps and
o Lottery system (e.g. fishbowl, a natural zero (e.g. degrees Kelvin, length
random number table etc.) in cm, number of children)
o From a grid on a map
Variance (s², σ²): the average deviation
- Systematic sampling
(error) from the scores to the mean. For every
o Every nth number from a list with a
score calculate the distance to the mean and
random start (e.g. from a list of the
square it (score-mean)2. Sum these squared
chamber of commerce, from a
errors and divide by number of scores -1.
telephone guide)
s² = ∑ (score – mean)² / (N – 1)
- Stratified random sampling
Standard deviation (s, σ): the average
o Operational population divided in
deviation of the data from the sample mean.
strata (sub-groups that possess
Take √ s² = s
specific characteristics)
Standard error of the mean (SE, σx̅): how
o Random sample of units taken from
well the sample mean represents the actual
each stratum, either proportionally
population mean (= std. dev. of mean). High SE
or disproportionally (bijv. 5
x is unlikely to be good estimate of µ. Estimate
groepen, total 400 sample size,
of SE by (if N>30) std. dev. of sample/√n.
dispr is 80 in elke groep en prop is
SE = s/√N
gebaseerd op hoeveel er in elke
Median: 50th percentile
groep echt zitten (%), goed voor
Quartiles: every 25th percentile (divides
small sample size)
distribution in 4 groups)
- Cluster sampling (one stage or multistage)
Quintiles: 20th (5 groups)
o Operational population
check if distribution is normal: Kolmogorov-
geographically dispersed into
Smirnov (or Shapiro-Wilk) test. If significance
clusters
level <0,05, then distribution is not normal. If
o Clusters are places where research
distribution is normal, skewness and kurtosis
units are found (e.g. schools, cities)
statistics close to 0. Check if they are
o Random selection of some clusters
significantly different from 0 by dividing through
o Random sample of research units
SE. If S / SE > 1,96 or < -1.96, then not
(e.g. 20%) taken from the selected
normal. Use Z score for normal distribution (tabA1)
clusters only

,1.2 Two-sided
e.g.
Standard normal distribution
H0: µ = µ0 (µ0 is a specific value of interest)
Total area (C = 1-Ɑ) = 1
Ha: µ  µ0
Smaller portion is: P(observation ≥ z)
two sided P-value (two-tailed)
Larger portion is: P(observation ≤ z)
Reject H0 when P-value <Ɑ
Table A.1 gives areas of portion = probabilities
Also possible with rejection region (one- and
C.I. formula:
two-sided):

Use df and Ɑ. Use table A.2. to find the

 rejection region. Take + and – version. Check if

estimate  z  t observed is within this region.

n
1.3
In practice standard deviation (σ) is unknown. Independent two sample t-test (σ1 = σ2)
Use sample data to estimate σ (s). Compare means between two groups, measures
across groups are independent.
n

 (x i  x )2 Standard error of µ1 - µ2:

ˆ  s  i 1  12  22 1 1
(n  1) Var( x1  x2 )  Var( x1 )  Var( x2 )     2(  )
n1 n2 n1 n2
SE becomes:
Information from both samples is pooled to
estimate σ by sp (std error of difference):
s
se( x ) 
n
C.I. becomes:
(1-a) Confidence Interval for μ1 - μ2 looks like:
s
estimate  t n1;α/2
1 1
n x1  x2   tcrit  s p   
 n1 n2 
Use correct df!
One sample t-test:
Example:

x  0
t df = n1 + n2 – 2 = 48,
tcrit = t48, 0.025 ≈ t50, 0.025 =2.01
s/ n The t-test for µ 1 - µ 2 (Δ0 is a specific
known number)
One-sided:
e.g. Alternative Hypothesis:

H0: µ = µ0 versus Ha: µ > µ0 (right sided) 1-Sided: e.g. H A : 1   2   0
Right sided P-value (one-tailed) 2-Sided: H A : 1   2   0
Reject H0 when P-value <Ɑ
Null Hypothesis: H 0 : 1   2   0
Test Statistic: ( x  x )  0
t 1 2
1 1
s p   
 n1 n2 

, Null-distribution of t is t distribution with df = n1 Se of difference:
+ n2 – 2.
C.I.
One-sided:
e.g.

H0: µ = µ0 versus Ha: µ < µ0
Left sided P-value (one-tailed)
Reject H0 when P-value <0,05 df = n – 1

Two-sided Required sample size one sample t-test
e.g.
Use formula:
H0: µ = µ0 versus Ha: µ  µ0
two sided P-value (two-tailed
( zα / 2 ) 2
Reject H0 when P-value <Ɑ n
(E /  )2
Check if σ1= σ2
Where E = required expected width of C.I.
Use Levene’s test from SPSS divided by 2
H0: variances are equal
Ha: variances are not equal Or use formula: Δ = μ1 – μ0
Sig <0,05 H0 is rejected
(zα  zβ ) 2
Independent two sample t-test (when σ1 ≠ n (one sided alternative hypothesis)
σ2) ( / σ)2
(zα/2  zβ ) 2
Use approximate df, read from SPSS output n ( two sided alternative hypothesis)
Estimated SE is used: ( / σ)2
Required sample size paired sample t-test

( zα / 2 ) 2
TS (no sp but other formula to calculate std n
error of difference): (E /  d )2

(zα  zβ ) 2
n (one sided alternative hypothesis)
( / σ d ) 2
(zα/2  zβ ) 2
C.I: n ( two sided alternative hypothesis)
( / σ d ) 2

Required sample size independent two
sample t-test

Paired sample t-test ( zα / 2 ) 2
e.g. oldest of twins taller than younger at age of n2
12. Which type of tires give max acceleration on
( E / σ) 2
10 cars?
(zα  zβ ) 2
Relevant sample statistics:
n2 (one sided alternative hypothesis)
( / σ)2
  d  (zα/2  zβ ) 2
n n 2
di d
i 1 i 1
n2
i
d  d ( x1  x2 ) sd2  sd  sd2 ( two sided alternative hypothesis)
n n 1 ( / σ)2

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper mk_mme. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €2,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 56326 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€2,99  11x  verkocht
  • (1)
In winkelwagen
Toegevoegd