Hoofdstuk 1 ‘hele getallen’
1.2.1 Talstelsels
Een talstelsel is een systeem hoe je getallen opschrijft. Voorbeelden hiervan zijn turven en
symbolen, zoals die van de Romeinen. Met een aantal simpele regels kon je hoeveelheden
symboliseren. Met behulp van de Romeinse abacus, kon je er zelfs mee rekenen. Het Romeinse
systeem heet het additief talstelsel.
I=1 V=5 X = 10 L = 50 C = 100 D = 500 M = 1000
De regels waren:
- Een symbool gevolgd door een symbool voor een even groot of kleiner symbool, betekent
dat de waarden van die symbolen bij elkaar worden opgeteld.
- Een symbool gevolgd door een symbool met een grotere waarde, betekent dat het kleinste
van het grootste symbool wordt afgetrokken.
Toen de maatschappij complexer werd, kwam het positiestelsel. Het positiestelsel geeft de waarde
van een getal aan. Als het getal 3273 is, dan is de eerste 3 drieduizend waar, de 2 tweehonderd, de 7
zeventig en de laatste 3 gewoon drie.
Duizendtallen Honderdtallen Tientallen Eenheden
103 102 101 100
3 2 7 3
Visualiseren van getallen
Je kunt getallen in beeld brengen door materiaal of door een model. Een
mooie context is om het tientallig stelsel in beeld te brengen door gebruik
van geld. In het basisonderwijs wordt ook wel gebruik gemaakt van MAB-
materiaal. Hierbij wordt het tientallig stelsel weergegeven in losse blokjes,
staafjes, plaatjes en kubussen.
Een getallenlijn is een belangrijk middel op inzicht te krijgen in het positiestelsel. Het gaat dan niet
alleen om de waarde, maar ook de plaats die een cijfer heeft binnen een verzameling van cijfers. Het
getal 667 zit tussen de 600 en 700. Dit kan ingekaderd worden door bewust te worden dat het tussen
de 660 en 670 zit, etc.
1.2.2 Contexten en modellen
Een model is een schematische weergave van een bewerking of opgave. Een context is een
betekenisvolle situatie gebaseerd op een model. Een context is zo ontworpen dat het model de
handeling inzichtelijk maakt. Je kan de som 8 x 7 is verschillende contexten doen. bijvoorbeeld
iemand werkt 7 uur per dag en verdient 8 euro per uur, hoeveel verdien je dan. Bij deze context kun
je het model van de getallenlijn gebruiken. Je kan ook zeggen ik heb een bakplaat. Op de bakplaat
passen 8 koekjes in de lengte en 7 koekjes in de breedte, hoeveel koekjes passen op de bakplaat. Bij
deze context kun je het rechthoekmodel gebruiken. Het is dezelfde opgave met hetzelfde antwoord,
maar een andere context.
Modellen voor de bewerkingen optellen, aftrekken, vermenigvuldigen en delen
Bewerkingen leiden naar een resultaat. Dat wordt aangegeven door het isgelijkteken (=). Optellen
wordt gezien als het samenvoegen van twee of meer hoeveelheden. De getallen die bij elkaar
worden opgeteld noemen we de termen van optelling. De uitkomst noemen we de som. Een model
, voor rekenen tot honderd is het honderdveld. De getallenlijn wordt ook wel gebruikt, ook wel het
lijnmodel genoemd.