100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary - Biomedical Imaging (BMs23) €13,99
In winkelwagen

Samenvatting

Summary - Biomedical Imaging (BMs23)

 23 keer bekeken  1 keer verkocht

An in depth summary of the "Biomedical Imaging (BMs23 course)". This summary contains all material discussed in the course and you should easily pass the exam using this. In addition, this summary can be used outside this course for a clear and complete description of MRI, ultrasound, PET, SPECT, X...

[Meer zien]

Voorbeeld 4 van de 20  pagina's

  • 23 januari 2024
  • 20
  • 2023/2024
  • Samenvatting
Alle documenten voor dit vak (1)
avatar-seller
rdkmn
BMs-23 Biomedical Imaging: Seeing is understanding
Content
1. MAGNETIC RESOANCE IMAGING (MRI)
- Comparison

- Magnetic Resonance Imaging (MRI)
- Computer Tomography (CT)
- Positron Emitting Tomography (PET)

- MRI machine

- Magnet
- Radiofrequency coils (RFs)
- Measuring T2 (transverse)
- Measuring T1 (longitudinal)
- Gradient coils

- Echo time (TE) & Repetition time (TR)
- Interpreting TR & TE times and their effects on contrast
- Tissue contrasts in MRI
- Additional remarks regarding TE, TR, T1 time, and T2 time
- Paramagnetic substances and magnetic field disturbances
- MRI in prostate cancer

2. ULTRASOUND
- Sound and sound waves
- Transducers
- Creating an image

- Attenuation correction
- Demodulation (envelope detection)
- Log compression

- Imaging modes
- Ultrafast ultrasound imaging

- Blood flow – Doppler
- Strain imaging / Quasi-static elastography
- Shear wave elastography

3. MOLECULAR IMAGING, PET, SPECT
- Radiotracer build
- Types of decay
- Measures of radioactivity
- Biological effects of radiation
- Linear Energy Transfer (LET)
- Dosimetry
- Radionuclides
- Single-Photon Emission Computed Tomography (SPECT)
- Positron Emission Tomography (PET)

,- Fluoro-deoxyglucose (18F-FDG)
- Radioguided surgery (gammaprobe)
- Types of radiotracers

- Antibodies
- Peptides

- Radiolabelling strategies
- Radiolabelling evaluations
- Tracers in radionuclide therapy
- Efficacy versus toxicity
- Types of radionuclides in targeted therapy

- Beta emitters
- Alpha emitters

4. FLUORESCENCE IMAGING AND X RAY
- Fluorescence
- Stokes shift
- Fluorescence image-guided surgery
- Photodynamic therapy (PDT)
- Image quality parameters

- Contrast (resolution)
- Spatial resolution
- Temporal resolution
- Noise
- Radiation dose

X-Ray

5. MAMMOGRAPHY AND CT
- Mammography
- Breast compression
- Magnification
- Tomosynthesis
- Computed tomography (CT)
- Back projection
- Partial volume effect

, 1. MAGNETIC RESONANCE IMAGING (MRI)

Comparison of biomedical imaging modalities
Magnetic Resonance Imaging (MRI)
+ Good soft tissue contrast
+ Non-ionizing
+ Multiple contrast available
- Low sensitivity

Computer Tomography (CT)
+ High resolution
+ Cheap
- Ionizing

Positron Emitting Tomography (PET)
+ Molecular specificity
- Expensive
- Ionizing




MRI Machine




Magnet
Superconductive coiled alloy in a copper matrix, charged with
electrical current (1 to 7 Tesla). Liquid cooling with helium (4.2
Kelvin) for effortless electricity flow. The main magnetic field is
called B0.

As a result of the magnetic field, protons will spin perpendicular to the field orientation
(‘rechterhandregel’) at a specific frequency called the ‘Larmor’ frequency.

This is given by: f0 = gamma * B0
- f0 is the precession (larmor) frequency (Mhz)
- gamma is the gyromagnetic ratio (Mhz/T)
- B0 is the magnetic field strength (T)

The protons can exist into two energy states, a low energy state (spin-up) and a high energy state
(spin down). The difference of energy between the two is given by: deltaE = gamma * h * B0
- gamma is the gyromagnetic ratio (Mhz/T)
- h is the Planck’s constant (6.626 x 10^-34)
- B0 is the magnetic field strength (T)

There are more than one protons in a system. Protons in high/low states cancel each other out. The
ratio of proton high vs low is given by: N+/N- = exp[-deltaE/ (k *T)]
- deltaE = gamma * h * B0

, - k is Boltzmann constant (1.381 x 10^23 J/K)
- T is temperature in Kelvin (K)

In MRI you only observe the global (netto) magnetization. The net magnetization (M) is the averaged
sum of many individual quantum spins as a vector.

Radiofrequency coils (RF)
RFs are either transmitter or receiver, or both. They
transmit/receive radio frequencies perpendicular to the
main magnetic field. Using a RF coil, a perpendicular field
(B1) can be applied to create torque on the original M
vector. With continued application of the B1 field, M
precesses at continually larger angles away from B0 (flip
angle). Important in this is that the B1 field frequency
should be the same as the Larmor frequency (Swing
Analogy).

A coil perpendicular to the main magnetic field (B0) can also record fluctuations in magnetization.
This is because a change in magnetic field, due to the precessing magnetization vector, induces a
current in the receiving RF coil. Because the coil is perpendicular to the B0 field, we record changes in
transverse magnetization.

When we terminate B1, the magnetization relaxes to its original state M0. This relaxation is
characterized into 3 plans (x,y,z). With z being parallel to the main magnetic field (so perpendicular to
RF pulse).

Transverse relaxation can be quantified with
T2, while longitudinal relaxation is quantified
with T1. T2 is at 37% point of transverse
relaxation and T1 is at 63% of longitudinal
relaxation. T1 is always longer than T2, since it
represent the timescale for the relaxation of
the longitudinal component, which involves
the relaxation of spins in the transverse plane.
T1 and T2 differ for tissues since they depend
on local macromolecules (this is why MRI is
excellent in soft-tissue). The differences in relaxations determines the contrasts in MRI.

Measuring T2 (transverse)
Transverse relaxation is due to dephasing of spins.
As seen in the picture, spins diphase, which
results in loss of Mx,y components of the
magnetization. Dephasing is caused by interaction
with the local environment. Since no magnet is
perfect, inhomogeneities occur, which further
decrease T2 into its observed T2* value. So T2 is
the original true T2 of the tissue, while T2* is less
than T2, because of inhomogeneities in the
magnetic field.

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper rdkmn. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €13,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 53068 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€13,99  1x  verkocht
  • (0)
In winkelwagen
Toegevoegd