100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Extensive Summary Probability Theory €7,49
In winkelwagen

Samenvatting

Extensive Summary Probability Theory

 16 keer bekeken  0 keer verkocht

This summary contains all material covered in Probability Theory for EOR. It includes material from the book, lecture slides, and the Harvard lectures of Blitzstein.

Voorbeeld 3 van de 19  pagina's

  • Nee
  • Chapter 1 to 6
  • 12 februari 2024
  • 19
  • 2023/2024
  • Samenvatting
book image

Titel boek:

Auteur(s):

  • Uitgave:
  • ISBN:
  • Druk:
Alle documenten voor dit vak (1)
avatar-seller
wietskedvoogd
Week 1
The sample space S is the set of all possible outcomes of one random experiment. The possible outcomes
depend on your chosen experiment. An event A is a subset of the sample space S, and we say that A
occurred if the actual outcome is in A.

Probability maps random events to numbers in the range [0, 1]. Essentially, probability is a function. The
codomain of this function is [0, 1], and the domain is the set of events: a collection of subsets of S, denoted
as {Ai ⊆ S, i ∈ I}.

Denote A be an event for an experiment with a finite sample space S, and each outcome is equally likely to
happen. Then the naive definition of probability is:
number of outcomes favorable to A |A|
PNaive (A) = =
number of outcomes in S |S|
The naive definition is applicable when there is symmetry in the problem that makes outcomes equally
likely(e.g. a deck of cards); when the outcomes are equally likely by design (e.g. a survey); when the naive
definition serves as a useful null model (we assume it applies, just to see what predictions would yield).

Some properties of events:
• Commutative laws:
A ∩ B = B ∩ A, A ∪ B = B ∪ A

• Associative laws:
(A ∪ B) ∪ C = A ∪ (B ∪ C), (A ∩ B) ∩ C = A ∩ (B ∩ C)

• Distributive laws:

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C), (A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C)

• De Morgan’s laws:
(A ∪ B)c = Ac ∩ B c , (A ∩ B)c = Ac ∪ B c
– Here, Ac and B c are the complements of A and B.
In some problems, we can count the number of possibilities using the multiplication rule. This holds for
sampling with replacement. Consider a compound experiment consisting of two sub-experiments, A and B.
Suppose that A has a possible outcomes, and for each of these outcomes B has b possible outcomes. Then
the compound experiment has ab possible outcomes.

Consider n objects and making k choices from them, one at a time with replacement. Then there are
nk possible outcomes. Here, order matters.

Consider n objects and making k choices from them, one at a time without replacement. Then there
are n(n − 1) . . . (n − k + 1) possible outcomes for 1 ≤ k ≤ n), and 0 possibilities for k > n (where order
matters.

The factorial n! counts the number of different orders that you can arrange n different items, where
we take into account orders. It is without replacement.

The binomial coefficient nk counts the number of possible ways to choose a subset of objects of a given


numerosity from a larger set, where orders are ignored. It counts the number of ways to choose k out of n.
 
n n!
=
k k!(n − k)!

Probability Theory Wietske de Voogd 4

, n!
(n−k)! counts how many different ordered sequences of k you can make out of n.

To choose k times from a set of n objects with replacement, and order doesn’t matter, there are n+k−1

k
ways. However, this result should not be used in the naive definition of probability except in very special
circumstances.

A story proof is a proof by interpretation. For counting problems, this often means counting the same
thing in two different ways.

Some properties:    
n n
=
k n−k
   
n−1 n
n =k
k−1 k
  X k   
m+n m n
=
k j=0
j k−j
n  
n
X n
(x + y) = xk y n−k
k
k=0
n  2  
X n 2(n − 1)
k2 = n2
k n−1
k=0

General definition of probability: a probability space consists of a sample space S and a probability
function P which takes an event A ⊆ S as input and returns P(A), a real number between 0 and 1, as
output. The function P must satisfy the following axioms:
1. P (∅) = 0, P (S) = 1
2. If A1 , A2 , .. are disjoint events, then

[ ∞
X
P( Aj ) = P (Aj )
j=1 j=1


Probability has the following properties, for any events A and B :
1. P (Ac ) = 1 − P (A)

2. If A ⊆ B, then P (A) ≤ P (B)
3. P (A ∪ B) = P (A) + P (B) − P (A ∩ B)
Inclusion-exclusion principle: for any events A1 , . . . , An ,
n
[ n
X X X
P( Ai ) = P (Ai ) − P (Ai ∩ Aj ) + P (Ai ∩ Aj ∩ Ak ) − · · · + (−1)n+1 P (A1 ∩ · · · ∩ An )
i=1 i=1 i<j i<j<k




Probability Theory Wietske de Voogd 5

, Week 2
Conditional probability of A given B (P (B) > 0): if A and B are events with P (B) > 0, then the
conditional probability of A given B, denoted by P (A|B), is defined as
P (A ∩ B)
P (A|B) =
P (B)
Properties of conditional probability:
• Conditional probability is a probability as it satisfies
– P (S|B) = 1 and P (∅|B) = 0
P
– P (∪i Ai |B) = i P (Ai |B) for Ai ∩ Aj = ∅ (∀, i ̸= j)
• In general, P (A|B) ̸= P (B|A)
P (B|A)P (A)
• Bayes’ Rule: suppose P (A), P (B) > 0, P (A|B) = P (B)

• Law of Total Probability (LOTP): let P disjoint Ai ’s be a partition of the sample space S such that
∪i Ai = S and P (Ai ) > 0, then P (B) = i P (B|Ai )P (Ai )
P (B|A)P (A) P (B|A)P (A)
• Bayes’ Rule + LOTP: P (A|B) = P (B) = P (B|A)P (A)+P (B|Ac )P (Ac )

The empty set or the sample space are always independent from other events. Events A and B are indepen-
dent if ’additional’ information on B does not change the probability value of event A.

A and B are independent if
P (A ∩ B) = P (A)P (B),
which implies that P (A|B) = P (A) (if P (B) > 0) and P (B|A) = P (B) (if P (A) > 0).

A and B are conditionally independent conditional on/given C if

P (A ∩ B|C) = P (A|C)P (B|C),

which implies that P (A|C, B) = P (A|C) (if P (B|C) > 0) and P (B|C, A) = P (B|C) (if P (A|C) > 0) where
P (A|C, B) = P (A|C ∩ B).

Conditional independence does not imply independence and vice versa. Conditional independence given
E does not imply conditional independence given E c . In practice, sometimes we use the following notations:
• P (A1 , A2 , . . . , An ) = P (A1 ∩ A2 ∩ · · · ∩ An ) = P (∩i Ai )
• P (C|A1 , A2 , . . . , An ) = P (C|A1 ∩ A2 ∩ · · · ∩ An ) = P (C| ∩i Ai )
A, B and C are independent if
• Pairwise independence:
– P (A ∩ B) = P (A)P (B), P (A ∩ C) = P (A)P (C), P (C ∩ B) = P (C)P (B)
– Pairwise independence does not necessarily lead to independence
• and additionally:
– P (A ∩ B ∩ C) = P (A)P (B)P (C)
For n events to be independent, above definition can be extended for not only each pair and triplet to satisfy
the conditions, but also each quadruplet, quintuplets, and so on.

Some more properties:


Probability Theory Wietske de Voogd 6

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper wietskedvoogd. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €7,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 57413 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€7,49
  • (0)
In winkelwagen
Toegevoegd