100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary IRM (introduction to research in marketing) spring €2,99
In winkelwagen

Samenvatting

Summary IRM (introduction to research in marketing) spring

1 beoordeling
 16 keer verkocht

Summary IRM spring (book lectures)

Laatste update van het document: 5 jaar geleden

Voorbeeld 3 van de 40  pagina's

  • 7 juni 2019
  • 7 juni 2019
  • 40
  • 2018/2019
  • Samenvatting
Alle documenten voor dit vak (2)

1  beoordeling

review-writer-avatar

Door: Mathias • 3 jaar geleden

avatar-seller
Willems2803
INTRO TO MARKETING RESEARCH
1. INTRODUCTION (LECTURE)
Course objectives: develop..

 Knowledge:
o Theoretical: be able to describe objectives and principles, test assumptions, and interpret
outcomes of multivariate methods dealt with in the course
o Marketing: be able to identify methods useful to solve a given marketing problem, and assess
managerial implications
 Skills: be able to apply multivariate methods/solve marketing problems using SPSS

HBBA: CHAPTER 1

1.1 Defining Multivariate Analysis

HBBA: ‘Broadly speaking, it refers to all statistical methods that simultaneously analyze multiple measurements
on each individual or object under investigation’

Multiple measurements  measure different types of variables.

1.2 Some Basic Concepts

Measurement scales:

 Nonmetric scales:
o Nominal  Characteristics: unique definition/identification classification. Phenomena: e.g.
brand name, gender, student ANR. Appropriate Methods of Analysis/Statistics: e.g. %, Chi
square test. Example: Shampoo Brand Identification: Pantene 1, Elvive 2, Etos 3
o Ordinal  Characteristics: indicate ‘order’, sequence. Phenomena: e.g. preference ranking,
level of education (ranking  1 is more than the other). Appropriate methods of
analysis/statistics: percentiles, median (in the middle), rank correlation + all previous statistics.
Example: Shampoo Brand Preference  Etos 3 (least preferred) < Elvive 2 < Pantene 1
 Example: Shopping frequency


= ordinal scale gives you one unit difference. 3th column: actual frequency.
Ordinal scale tells you which one is more or less, but not how much more or less.



Metric scales:

 Interval  Characteristics: arbitrary origin. Phenomena: e.g. attribute scores, price index. Appropriate
Methods of analysis: arithmetic average, range, standard deviation, product-moment correlation, +
previous methods. Example: Shampoo Brand Quality score  Pantene 95, Elvive 90, Etos 49. Lowest =
0, highest = 100.  Gives an ordering. But we can see how much the differences are. With ordinal data,
you didn’t know that.
 Ratio  Characteristics: unique origin. Phenomena: e.g. age, cost, number of customers. Appropriate
methods of analysis: geometric average, coefficient of variation, + all previous methods. Example:
Shampoo Brand Price  Pantene 3.75, Elvive 4.66, Etos 2.89 (Euros/300ml)
o Difference between interval and ratio? Zero = zero, clear what zero means (ratio)  unique
origin.

Errors: Reliability and Validity

 Reliability: is the measure ‘consistent’ correctly registered

1

,  Validity: does the measure capture the concept it is supposed to measure?

Statistical Significance and Power

 Hypothesis testing  to examine differences. We use samples and never examine the complete
population, which can result in:

o Type I error () = probability of test showing
statistical significance when it is not present
(‘false positive’). In reality no different, test tells
you that there is a difference. (We focus on alfa!!
Alpha not higher than 5%)
o Power (1-) = probability of test showing
statistical significance when it is present. There
was a difference in reality, but your test told you
it wasn’t.
 Suppose that the truth is ‘no difference’: what
would error-free population measure, lead to?



= population difference 0  no difference




 Suppose that the truth is: ‘no difference’: what would sample measures, with error, lead to?


= if I move the cut-off value to the right, the alpha will decrease, and
thus the type I error risk is getting lower. You want to prevent type I
error (but change type 2 error increases).




 Power  probability that if there is an effect in reality and you also find an affect.
o Power depends on:
  (+)  larger alpha = larger power
 Effect size (+)  larger effect size = larger power (effect size = what you want to
measure  size of correlation (for example between advertising and sales)).
 Sample Size n (+)  larger sample = larger power
o Implications:
 Anticipate consequences of , effect and n
 Assess/incorporate power when interpreting results

1.3 Types of Multivariate Methods: Dependence or Interdependence techniques

Dependence techniques:

 One or more variables can be identified as dependent variables and the remaining as independent
variables.
 Choice of dependence techniques depends on the number of DV’s involved in analysis.

Interdependence techniques:

 Whole set of interdependent relationships is examined


2

,  Further classified as having focus on variable or objects




HBBA CHAPTER 2: PRELIMINARY DATA ANALYSIS AND DATA PREPARATION

EXAM: Whatever is mention in the slides, you have to learn it in HS2, here it is very brief, but no new things.
Example  “what does missing at random mean”….

2.1 Conduct preliminary analysis: graphical inspection and simple analysis

Why?

 Get a feel for data
 Suggest possible problems (and remedies) in next steps

How?

 Univariate profiling
 Bivariate analysis

2.2 Detect outliers

What are outliers? “Observations with a unique combination of characteristics
identifiable as distinctly different from the other observations”

Outliers:

 There are two basic types of outliers:
o ‘Good’: true value (probably) – not errors/mistakes, real values that gives variation.
o ‘Bad’: something is wrong? ( in many cases)
 To distinguish these types, one should investigate the causes
o Procedural error
o Exceptional circumstances (Cause known or unknown)


3

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper Willems2803. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €2,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 75282 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€2,99  16x  verkocht
  • (1)
In winkelwagen
Toegevoegd