100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Machine Learning 2 Samenvatting/College aantekening Endterm €8,96   In winkelwagen

College aantekeningen

Machine Learning 2 Samenvatting/College aantekening Endterm

 22 keer bekeken  2 keer verkocht

In dit document staat per college alle informatie die ik heb verzameld (incl. tekeningen en cuts uit de slides) om te studeren voor de Endterm van Machine Learning 2.

Voorbeeld 2 van de 15  pagina's

  • 12 september 2024
  • 15
  • 2023/2024
  • College aantekeningen
  • Heysem kaya & meaghan fowlie
  • Alle colleges
Alle documenten voor dit vak (2)
avatar-seller
Alysa3
PLA maximizes data
wiw Scalar
overall variance
of the
of directions
=

ra along a small set ,
who
info on class labels

WWT = matrix
-C




Lecture 9 og(10/23
instances x
features
The following notation will be used: * nxd = matrix




Reasons to reduce dimensionality:
No
-Reduces time complexity; less computation
-Reduces space complexity; fewer parameters
* 1st Axis PCA creates accounts
-Saves cost of observing/measuring features
-Simpler models are more robust in small datasets for most variation in data
-More interpretable; simpler explanation
-Data visualisation (structure, groups, outliers) if plotted in 2 or 3 dimensions
Unsupervised
Feature selection: (subset selection algorithms): choosing k<d important features and ignoring the remaining d - k
->preferred when features are individually powerful/meaningful
Feature extraction: project the original x i, i=1,…,d dimensions to new k<d dimensions zj, j=1,…,k)
->preferred when features are individually weak and have similar variance
We want to maximise

*
PCA (Principal Component Analysis); Find a low-dimensional space s.t. when x is projected there, information loss is
info density
low

minimised By leaving out column don't loose lot of info
a , we a


-The projection of x on the direction of w is: z = w Tx a


-Find w s.t. Var(z) is maximised (subject to |w| = 1)
constraint wisunit vet
minimize
function
a
Considering a constrained optimisation problem min x Tw subject to Aw = b, w ∈ S w varianeas
Lagrangian Relaxation method relaxes the explicit linear (equality) constraints by introducing a langrange multiplier
t
vector λ and brings them into the optimization function: min x tw + λ (Aw - b) subject to w ∈ S
The langrangian function of the original problem can be expressed as: L(λ) = min{x t w + λ (Aw - b) | w ∈ S}
t

T
PCA makes sure z = W (x - m), where the columns of W are the eigenvectors of ∑ and m is sample mean;
Centers the data at the origin and rotates the axes
Zwi Xw =
,
,
rector
with WT [W X O
, ,
=
2Zw
& xWiw,
,
-




=
zaw , =
0




pick largest eigenvalue
from [+ biggest value
of
variance
for projected data X1 Xi
PoV (Proportion of Variance): X x2 xk XdS
+. .. +


, + +... + +... +


when λ i are sorted in descending order, typically you can stop at PoV > 0.9 or elbow data visualisation/dimensionality reduction
PCA can be applied to clean out outliers from data, to de-noise, and learn/explore common patterns(eigenvectors)
T
Singular Value Decomposition: X = VAW is a dimensionality/data reduction method
U V = NxN ;contains eigenvectors of XX X USWT
T
=
C
eigenvalues of
w T
W = dxd ;contains eigenvectors of X X AV = WTX A = VXWT Given X centered ; C =
represent variances
A = Nxd ;contains singular values on its first k diagonal of principal components
S
Singular values in SVD are
eigenvalues
[
represent amount
of variance of each vector




LDA Linear Discriminant Analysis (k=2 classes) focus is separability between classes on

*
Find a low-dimensional space s.t. when x is projected, classes are well-separated
Find w that maximises =>
s see axis
maxseparationbetweenmeansofprojecte
new

new axis




S
We come to deal with between-class scatter:
eigenvectors basedt
And within-class scatter: (k=2, binary classification case)

Fishers Linear Discriminant (k=2 classes)
~ between
3
. within




Reduce
dimensionality to 1

, SVD VAWT X is mean-normalized how
: X =
,
Assuming ,
are the

C XTX/N-1 and related ?
eigenvalues of singular values of SVD
=




singular values in SVD
of mean-normalized X are
directly related to the
eigenvalues of cov-matrix C ,
so
singular values provide info about the

amount
of variance explained by each principal component just like ,



the eigenvalues of C .


Largest singular value* largest eigenvalue


Find point central to all classes
min . distance between each class &
the central point while min Scatter
, .




d + d2 + d2/52 + 52 + 52




Vector C WIWT CWWT
projection Imagine light above under
= =



~ U where the red arrow shadows
,
matrix
of eigenvectorsC diagonal matrix of eigenvalues (
WTW I
are
projected on the
target vector eigenvectors of (in W are
orthogonal to each other >
-
=




u = (2) unit vector (has
lengthymagnitude = 1)


& Xi K, K7
. .
., magnitude datapoints

01


Eigenvectors -
X values A =
- 2 -
3 o
m
is not invertible


Val : Ax =
XX ,
where X +0 and XER Ax XX XIx = = >
-
Ax XIX -
= (A XI)x - = 0


- -
- x I

So det1A-XI) + det det det (ad-b)
eigenvalue eigenvector 0 -2
=
- =
=




= x2 + 3x + 2

= (x+ 2)(x + 1) 0+ x 2, x 1

:
= = =




(t) (2)
Vec + x X 2x 3x2
x23any values work so
=
- - - = -

,

-

2x1 =
2X2
Xi = - X2
If you know something is an eigenvector for a given matrix/linear transformation, you know that, that linear transformation will map that
eigenvector onto a different vector which maintains the same ratios (ex. ratios of x1(length) to x2(weight))


Lagrange multipliers = Ul
uSu = (u + u1)
H = 42
*
Direction + uTSu + X(1 uπy)
is important not
magnitude ; llull 1 + Max (uTSu) S . 4 +u 1
t -
= =
, .




11411

Taking the derivative of ↓ get Su 14 uSu XnTy
=
We = + =


maximise
So take all S to maximise .
eigenvalues of and
find biggest one X

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper Alysa3. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €8,96. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 77254 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€8,96  2x  verkocht
  • (0)
  Kopen