100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Week 4 BOS: experimenteel deel €2,99
In winkelwagen

College aantekeningen

Week 4 BOS: experimenteel deel

 30 keer bekeken  0 keer verkocht

Hoorcollege van het experimentele deel van Onderzoeksmethoden en Statistiek (tevens verkrijgbaar in een bundel met de andere delen van experimenteel onderzoek, of met alle uitwerkingen van het gehele vak).

Voorbeeld 2 van de 6  pagina's

  • 22 februari 2020
  • 6
  • 2019/2020
  • College aantekeningen
  • Onbekend
  • Alle colleges
Alle documenten voor dit vak (17)
avatar-seller
VerenaIsmay
Hoorcollege 4 Basis van onderzoeksmethoden en statistiek 23-10-2019

Experimenteel

ANOVA: nieuwe analysetechniek. (Zowel via NHST als Bayesiaanse)

Eerder hebben we gekeken naar het verschil in gemiddelde rekenscore tussen de
directe instructiegroep en de controlegroep. In het onderzoek waren er eigenlijk
twee experimentele groepen: directe instructie en eigen inbreng. We hebben nu
dus 3 groepen. Dat past niet in een t-toets voor onafhankelijke groepen.

We kunnen de groepsgemiddelden natuurlijk 2 aan 2 analyseren. Maar … dan
gebruiken we bij iedere toets a: 0.5. Voor drie vergelijkingen levert dit een veel
grotere kans op een Type I fout op. Als we een alfa van 0.5 gebruiken is er 5%
kans dat we de nulhypothese ten onrechte verwerpen. Als we meerdere
vergelijkingen doen op dezelfde data, dan gebruiken we dezelfde data meerdere
keren, waardoor de totale kans op een Type I fout veel groter. We willen dus
eigenlijk liever 1 hypothesetoets waardoor we een uitspraak kunnen doen.

Kanskapitalisatie: de kans op een type I fout die groter wordt doordat je
meerdere keren met dezelfd e data werkt.

ANOVA
We zijn dus opzoek naar een analysetechniek waarin we drie groepen tegelijk
kunnen analyseren, dat is de ANOVA. We kunnen nu de volgende vraag stellen
en beantwoorden:

Verschillen de drie groepen in hun gemiddelde rekenscore?

Afhankelijke variabele: gemiddelde rekenscore op hoofdrekenen
Factor (= onafhankelijke variabele in ANOVA): groep.

Stap 1: Hypothesen
Nulhypothese: de drie gemiddelden zijn aan elkaar gelijk. H0: µDI = µEI = µC
Alternatieve hypothese: minimaal een van de gemiddelden is anders.

ANOVA kan ook significant zijn als een van de gemiddelden anders is.

Significantieniveau a = 0.5

Stap 2: Assumpties
Voorwaarden voor de ANOVA:
• Onafhankelijkheid van waarnemingen à de score van iedere persoon
in de analyse moet onafhankelijk zijn van de andere scores.
Er is sprake van afhankelijkheid van scores wanneer er bijv. overleg
plaatsvindt bij het beantwoorden van de vragen.
• Geen uitschieters (die te veel invloed hebben)
Milde uitschieters worden aangegeven met een rondje, extreme
uitschieters worden aangegeven met een ster. Milde uitschieters hebben
meestal geen/weinig invloed op het resultaat van de ANOVA.

, • Afhankelijke variabele moet in iedere groep normaal verdeeld zijn
In alle groepen afwijzing van normaliteit. Schending van deze voorwaarde
beïnvloedt de resultaten van de ANOVA niet ernstig wanneer bij alle
groepen N ≥ 30
• Spreiding moet in iedere groep ongeveer even groot zijn
(homoscedasticiteit)
H0: Spreiding is in beide groepen gelijk
H1: Spreiding is in beide groepen niet gelijk
Levene’s test: kijken of de spreiding in de een significant anders is dan bij
de ander.
Als je de nulhypothese niet verwerpt is er sprake van gelijke spreiding,
dus voldaan aan deze voorwaarden. Wanneer je niet voldaan hebt:
robuustheid als alle groepen ongeveer even groot zijn (qua boxplots).

Beschrijvende statistieken:
De groepsgemiddelden verschillen van elkaar. De experimentele groepen hebben
een hoger gemiddelde dan de controlegroep. Uit de ANOVA moet nu blijken of dit
een significant verschil is of dat dit komt door toeval.


Binnen de ANOVA wordt de F-waarde berekend als toetsingsgrootheid. Dat is de
ratio van variantie binnen groepen en variantie tussen groepen. F = MSbetween
/ MSwithin




Omdat de ANOVA-gebruik maakt van de rechtsverdeling kan er geen gebruik
worden gemaakt van enkel zijdig of tweezijdige toetsing.

De variantie binnen de groepen delen we door de variantie tussen de groepen.

Variantie: statistische term voor variatie en spreiding in scores.

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper VerenaIsmay. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €2,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 51292 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€2,99
  • (0)
In winkelwagen
Toegevoegd