100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Time value of money -CFA level1 Exam Notes €3,43   In winkelwagen

College aantekeningen

Time value of money -CFA level1 Exam Notes

 2 keer bekeken  0 keer verkocht

Compact Notes for CFA level 1 students By Professor James Forjan, PhD, CFA

Voorbeeld 3 van de 27  pagina's

  • 13 november 2024
  • 27
  • 2023/2024
  • College aantekeningen
  • Professor james forjan, phd, cfa
  • Alle colleges
book image

Titel boek:

Auteur(s):

  • Uitgave:
  • ISBN:
  • Druk:
Alles voor dit studieboek (2)
Alle documenten voor dit vak (268)
avatar-seller
qukjev
Time Value of Money Basics

The time value of money (TVM) is a fundamental concept in finance that
recognizes the value of money today is worth more than the same
amount of money in the future. This is due to inflation, opportunity cost,
and the potential earning capacity of money.

Imagine you have $100 today. If you put it in a savings account with a 2%
annual interest rate, you would have $102 after one year. Therefore, $100
today is worth more than $102 a year from now.

This concept is essential when evaluating future cash flows, such as
calculating the present value (PV) or future value (FV) of money.

Present Value

The present value is the current worth of a future sum of money or stream
of cash flows, given a specific rate of return.

For example, let's say you expect to receive $1,000 in one year and the
interest rate is 5%. To calculate the present value, you would divide the
future value by (1 + interest rate).

PV = FV / (1 + interest rate) PV = $1,000 / (1 + 0.05) PV = $1,.05 PV
= $952.38

Therefore, the present value of $1,000 to be received in one year at a 5%
interest rate is $952.38.

Future Value

The future value is the value of a current sum of money or stream of cash
flows at a specified date in the future, given a specific rate of return.

For example, let's say you have $1,000 today and want to know how much
it will be worth in five years at a 3% interest rate. To calculate the future
value, you would multiply the present value by (1 + interest rate)^number
of periods.

FV = PV x (1 + interest rate)^number of periods FV = $1,000 x (1 +
0.03)^5 FV = $1,000 x 1.159274 FV = $1,159.27

Therefore, the future value of $1,000 today at a 3% interest rate for five
years is $1,159.27.

, Annuities

An annuity is a series of equal payments or receipts made at regular
intervals over a specified period. There are two types of annuities:
ordinary annuities and annuities due.

For example, let's say you want to save $1,000 per year for the next 10
years and the interest rate is 4%. To calculate the future value of the
annuity, you would use the formula:

FV = PMT x [(1 + interest rate)^number of periods - 1] / interest rate FV =
$1,000 x [(1 + 0.04)^10 - 1] / 0.04 FV = $1,000 x 14.80295 FV = $14,802.95

Therefore, the future value of a $1,000 annual payment for 10 years at a
4% interest rate is $14,802.95.

Notes on Calculating Future and Present Values

Calculating the future value (FV) of an investment is an important concept
in finance. It represents the total amount of money an investment will be
worth in the future, taking into account the compounding of interest.

To calculate the FV of a single sum of money, we can use the formula:

FV = PV x (1 + r)^n

where:

 FV is the future value
 PV is the present value (the initial amount of money invested)
 r is the interest rate (as a decimal)
 n is the number of periods (the amount of time the money is
invested for)
For example, let's say you invest $1,000 today at an interest rate of 5% per
year for 10 years. The FV of this investment would be:

FV = $1,000 x (1 + 0.05)^10 = $1,628.89

Calculating the present value (PV) of an investment is simply the reverse
of calculating the FV. It represents the current value of a future sum of
money, taking into account the time value of money and the interest rate.

To calculate the PV of a single sum of money, we can use the formula:

PV = FV / (1 + r)^n

, For example, let's say you expect to receive a payment of $2,000 in 5 years
at an interest rate of 6% per year. The PV of this payment would be:

PV = $2,000 / (1 + 0.06)^5 = $1,437.13

These formulas can also be used to calculate the FV and PV of multiple
payments, such as in an annuity. An annuity is a series of equal payments
made at regular intervals.

To calculate the FV of an annuity, we can use the formula:

FV = PMT x [(1 + r)^n - 1] / r

where:

 FV is the future value
 PMT is the periodic payment
 r is the interest rate (as a decimal)
 n is the total number of periods
For example, let's say you plan to make monthly payments of $200 into an
account that earns 3% interest per year for 10 years. The FV of this
annuity would be:

FV = $200 x [(1 + 0.03/12)^(12 x 10) - 1] / (0.03/12) = $31,952.13

To calculate the PV of an annuity, we can use the formula:

PV = PMT x [1 - (1 + r)^-n] / r

For example, let's say you expect to receive monthly payments of $500 for
the next 20 years at an interest rate of 4% per year. The PV of this annuity
would be:

PV = $500 x [1 - (1 + 0.04/12)^(-12 x 20)] / (0.04/12) = $87,555.27

Interest rates and required returns are critical concepts in finance, as they
represent the cost of borrowing and the compensation required for
investment risk, respectively.

Interest rates can be described in terms of nominal and real rates.
Nominal interest rates represent the stated rate of interest, while real
interest rates adjust for inflation and reflect the purchasing power of
money over time.

To calculate the real interest rate, we can use the formula:

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper qukjev. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €3,43. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 67474 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€3,43
  • (0)
  Kopen