Statistische modellen 1 l SPO/RUG Groningen l Pre-master Orthopedagogiek l 2019 - 2020
College 1, 6-2-2020.
Algemene informatie
Gratis versie van SPSS: JASP
Tentamenstof: Nederlandse boek ‘Statistiek in de praktijk’ hoofdstuk 5 t/m 10. Qua stof komt dit
overeen, alleen de notaties/ symbolen kunnen soms iets anders zijn.
output van de SPSS interpreteren.
Inleiding onderzoek.
Bij het vak inleiding onderzoek hebben we het volgende behandeld (is basis voor waar we nu mee
verder gaan):
Inleiding onderzoek: beschrijving geven van verdelingen van scores op variabelen in een
dataset.
- Univariate beschrijvingen (richten zich op 1 variabele per keer)
Boxplot, histogram, stemplot
Gemiddelde, mediaan, modus: waar de verdeling van scores wat betreft
centrum ligt.
SD, range, IQR
Frequentietabellen
- Bivariate beschrijvingen (richten zich op meerdere variabelen per keer; kan ik
variabelen met elkaar in verband brengen).
Spreidingsdiagram, kruistabellen
Correlatie, gowers, rho, tau, kappa (samenhangsmaten).
Regressie analyse gaan we bij dit vak uitbouwen naar het ‘toetsende’ deel.
Terminologie (herhaling)
Populatie= Groep waarvan onderzoeker eigenschappen wil weten
Parameter= Numerieke samenvatting van eigenschap in populatie
Probeer je schatten met een steekproef.
Je geeft hiermee aan wat je nou eigenlijk wil meten van een populatie. Parameter is een
overkoepelende term. Je meet een bepaalde eigenschap.
Steekproef= Subgroep uit populatie die onderzocht wordt
Statistic= Numerieke samenvatting van eigenschap in steekproef
Statistische modellen 1, kennismaking inferentiële statistiek
Er van uit gaande dat de steekproef die we hebben representatief is voor de doelpopulatie.
Wat kunnen we over de populatie afleiden uit datgene wat onze beschrijvingen van de
steekproefdata ons vertelt
Steekproefgemiddelde als schatting populatiegemiddelde?
Steekproefproportie als schatting populatieproportie?
Steekproefcorrelatie als schatting populatiecorrelatie?
Bij deze 3 bovenstaande vragen stel je jezelf ook telkens de vraag: ‘’ Wat is de foutmarge’’?
Je rekent bij een gemiddelde de foutmarge op en af ( gem +/- foutmarge)
Hoe kom ik aan foutenmarges? -> Daarvoor heb ik een kansverdeling nodig en een specifieke vorm
van een kansverdeling is een steekproevenverdeling. Bij elk onderwerp bij dit vak komt de
steekproevenverdeling aan bod, hier zijn diverse varianten (5) van. Een bekende is de z-verdeling (z-
, Statistische modellen 1 l SPO/RUG Groningen l Pre-master Orthopedagogiek l 2019 - 2020
score). We gaan in dit college van kansverdeling naar steekproevenverdeling werken en kijken wat
we daar mee kunnen doen.
Kansverdeling
Kansverdeling = een verdeling van mogelijke uitkomsten.
- Als ik 2 keer met een munt ga gooien, dan zijn de mogelijke uitkomsten: 1x 2 maal
munt, 1x 2 maal kop, 1 x 1 maal kop en 1 maal munt. Er zijn dus 3 mogelijkheden.
Iedere kans is dan 1/3.
Voorbeeld: 4 kinderen; kans op 0,1,2,3 of 4 meisjes. Steekproef van gezinnen met 4 kinderen.
- Verticale as geeft de kans weer, de horizontale as de mogelijke uitkomsten.
Kansverdeling is een verdeling in kansen. Het kan meerdere vormen aannemen. Denk maar eens aan
de 68-95, 99-7% regel. Dit werkt als kansberekening bij kwantitatieve variabelen. Als je bijvoorbeeld
het gemiddelde wilt gaan onderzoeken. Steekproeven schatten de populatiewaarde. Iedere
steekproef heeft een andere uitkomst, maar wel +/- een gemiddelde. Dat is de
steekproefgemiddelde. Sommige zullen het dus overschatten.
Verschil tussen discrete kansverdelingen (eindig aantal uitkomsten) en continue kansverdelingen
(theoretisch oneindig). Bij een continue verdeling wordt dus vaak een curve gebruikt ipv een
staafdiagram of histogram bijvoorbeeld. Omdat het oneindig kan zijn.
Verdeling van scores in populatie en steekproeven