100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Experimental Design and Analysis - Practise Exam with answers €7,99
In winkelwagen

Overig

Experimental Design and Analysis - Practise Exam with answers

 1 keer bekeken  0 keer verkocht

A practise exam with answers for the course Experimental Design and Analysis, MSc AI.

Voorbeeld 2 van de 10  pagina's

  • 31 december 2024
  • 10
  • 2023/2024
  • Overig
  • Onbekend
Alle documenten voor dit vak (2)
avatar-seller
tararoopram
Question 1
Birthweights a) The vector birthweight contains the birthweights (in grams) of 188 newborn
babies. Denote the underlying mean birthweight by μ. Suppose we implemented the following
commands in R:
> mean(birthweight)
2913.293
> var(birthweight)
486506.6
> qnorm(0.96)
1.750686
> qnorm(0.98)
2.053749

Assuming normality, construct a bounded 96% confidence interval (CI) for μ:
[2805, 3010.4] - [2806.19, 3015.5] - [2808.08, 3018.5] - [2800.19, 3011.5]
. Evaluate the sample size needed to provide that the length of the 96%-CI is at most 100:
830 - 813 - 798 - 821 - 578
. Would it be possible to compute a bootstrap 92%-CI for μ by using the sample birthweights?
Not relevant - yes - no

Question 2
Birthweights b) The vector birthweight contains the birthweights (in grams) of 188 newborn
babies. Denote the underlying mean birthweight by μ. An expert claims that the mean
birthweight is bigger than 2800 gram. We want to verify this claim by using relevant test(s).

Choose the correct claim(s).
We can use the following sign test
binom.test(sum(birthweight<=2800),n,0.5,alt="l").
We can use the following sign test
binom.test(sum(birthweight>2800),n,0.5,alt="g").
Under normality, we can use the following t-test t.test(birthweight,mu=2800,alt="l")
Under normality, we can use the following t-test
t.test(birthweight,mu=2800,alt="g")
We cannot perform a sign tests for this problem.
We can use the following sign test binom.test(sum(birthweight<2800),n,0.5,alt="g").

Question 3
Birthweights c) The vector birthweight contains the birthweights (in grams) of 188 newborn
babies. Denote the underlying mean birthweight by μ. An expert claims that the mean
birthweight is bigger than 2800 gram. We want to verify this claim by using relevant test(s).

Suppose we have two tests to verify the claim of the expert. One test has the significance
alpha=0.3 and the power 0.78, the second test has the significance alpha=0.4 and the error of
the second kind 0.25. Which of the two tests is preferable?

, 1st - 2nd - cannot say
.

Suppose we use a t-test to verify the claim of the expert, then
We can estimate - we cannot estimate - we can compute
its power for
All parameter values from the null hypothesis - All parameter values - All parameter values
from the alternative hypothesis
.

Question 4
Birthweights d) The vector birthweight contains the birthweights (in grams) of 188 newborn
babies. Let p be the probability that birthweight of a newborn baby is less than 2600 gram.
Suppose we implemented the following command in R:
> p=sum(t<2600)/n; p
0.3522727

Suppose further that, using asymptotic normality, the expert computed the left end pl=0.25 of
the confidence interval [pl,pr] for p. We recover the whole confidence interval as
[0.15, 0.39] - [0.25, 0.41] - [0.23, 0.45] - [0.19, 0.44]
(rounded to two decimal digits) and its confidence level we recover as
q=(p+0.25)/sqrt(p*(1-p)/n); 1-2*(1-pnorm(q))
q=(p+0.25)/sqrt(p*(1-p)/n); 1-2*(1-qnorm(q))
q=(p-0.25)/sqrt(p*(1-p)/n); 1-(1-pnorm(q))
q=(p-0.25)/sqrt(p*(1-p)/n); 1-2*(1-pnorm(q))


Question 5
Birthweights e) The vector birthweight contains the birthweights (in grams) of 188 newborn
babies. An expert reports that there were 34 male and 28 female babies among 62 who
weighted less than 2600 gram, and 61 male and 65 female babies among the remaining 126
babies. The expert claims that the mean weight is different for male and female babies. We
want to verify this claim by an appropriate test. To test the claim, represent the data in the form
of contingency table.

male female
weight<2600g V1 V2
weight>2600g V3 V4

Determine the values of the above contingency table.
V1= 28 - 61 - 65 - 68 - 34
V2= 28 - 61 - 65 - 68 - 34
V3= 28 - 61 - 65 - 68 - 34
V4= 28 - 61 - 65 - 68 - 34

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper tararoopram. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €7,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 48298 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€7,99
  • (0)
In winkelwagen
Toegevoegd