100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting Verhoudingen, procenten, breuken en kommagetallen €4,99
In winkelwagen

Samenvatting

Samenvatting Verhoudingen, procenten, breuken en kommagetallen

9 beoordelingen
 91 keer verkocht

Dit is een samenvatting gemaakt van het boek Verhoudingen, procenten, breuken en kommagetallen van de reken-wiskundedidactiek. In de samenvatting staan duidelijke voorbeelden en betreft alles voor het tentamen! Veel succes!! Let wel op: ik schrijf mijn samenvattingen verhalend. Vind je dit niet ...

[Meer zien]

Voorbeeld 3 van de 23  pagina's

  • Nee
  • Hoofdstuk 1 t/m 7.1
  • 24 november 2020
  • 23
  • 2020/2021
  • Samenvatting
book image

Titel boek:

Auteur(s):

  • Uitgave:
  • ISBN:
  • Druk:
Alle documenten voor dit vak (7)

9  beoordelingen

review-writer-avatar

Door: jadevanasselt30 • 1 jaar geleden

review-writer-avatar

Door: jphielix • 3 jaar geleden

review-writer-avatar

Door: diedeeh • 3 jaar geleden

review-writer-avatar

Door: emieltieman • 2 jaar geleden

review-writer-avatar

Door: isajoliemagre • 2 jaar geleden

review-writer-avatar

Door: mechteldks • 3 jaar geleden

review-writer-avatar

Door: evikroner • 2 jaar geleden

Bekijk meer beoordelingen  
avatar-seller
lisannespabo
Samenvatting VPBK
Verhoudingen, procenten, breuken en kommagetallen H1 t/m H6 + H7.1


Hoofdstuk 1 Samenhang verhoudingen, procenten, breuken en kommagetallen
1.1 Verhoudingen zijn de basis

Verhoudingen, gebroken getallen en procenten hebben veel met elkaar te maken. Ze zien er
verschillend uit, maar je kunt er vaak hetzelfde mee tot uitdrukking brengen. Bijvoorbeeld:
- 1 op de 4 pabostudenten is een jongen;
1
- deel van de pabostudenten is een jongen;
4
- 25% van de studenten op de pabo is een jongen;
- De verhouding van het aantal mannelijke studenten ten opzichte van het totale aantal
studenten is 1 : 4. Maar let op: de verhouding tussen het aantal jongens en het aantal
meisjes op de pabo is 1 : 3!

Wiskundig gezien bestaat er een aantal overeenkomsten tussen de (sub)domeinen verhoudingen,
gebroken getallen en procenten. Zo kun je bij ieder domein een relatief aspect onderscheiden, zijn
kommagetallen decimale breuken en kunnen breuken en procenten allebei een verhouding
aangeven. Een breuk geeft de verhouding aan tussen een deel en een geheel. Een percentage geeft
de verhouding aan tussen een deel en een geheel dat op honderd is gesteld.
Aan de andere kant kennen de domeinen elk hun eigen gebruik en verschijningsvormen in de
realiteit. Bij notatie van geldbedragen gebruiken we bijvoorbeeld kommagetallen en geen breuken.
In het dagelijks leven gebruiken we verhoudingen, breuken en procenten door elkaar. Bijvoorbeeld in
een krant, waar ze worden gebruikt om getalsmatige informatie weer te geven.

Absolute gegevens zijn getallen die naar daadwerkelijke hoeveelheden of aantallen verwijzen.
Bijvoorbeeld: er zitten 536 studenten op deze pabo. Relatieve gegevens over hoeveelheden of
aantallen zijn verhoudingsmatige gegevens waar je niet direct het daadwerkelijke getal of aantal kunt
aflezen. Bijvoorbeeld: 1 op de 4 pabostudenten is man.
Voor de zich ontwikkelende gecijferdheid van kinderen is het onderscheid tussen absoluut en relatief
van groot belang. Zonder begrip van dit onderscheid kun je namelijk veel informatie uit de krant en
het nieuws niet goed begrijpen.
Om te voorkomen dat kinderen getallen en percentages door elkaar halen, is het – vooral in het
begin van het leerproces – verstandig de getallen benoemd te noteren.

1.2 Onderlinge relaties

Om kinderen greep te laten krijgen op de betekenissen van verhoudingen, procenten en gebroken
getallen, besteden reken-wiskundemethodes aandacht aan de verschillende verschijningsvormen
ervan. Om de samenhang te kunnen doorzien, is het ook nodig dat kinderen leren dat de domeinen
in de realiteit door elkaar voorkomen.
Daarnaast leren kinderen de betekenissen van bewerkingen, waardoor ze deze niet allemaal
afzonderlijk leren, zoals:
1 1
- x 10 betekent het deel nemen van 10;
5 5
1
- Ik weet dat 20% ergens van hetzelfde is als deel daarvan nemen, want 100 gedeeld door 5
5
is 20.

1

,Breuken en kommagetallen
Breuken en kommagetallen kennen zowel overeenkomsten als verschillen. In betekenis komen ze
met elkaar overeen: het zijn allebei gebroken getallen. De notatie verschilt echter: kommagetallen
lijken juist op hele getallen en niet op breuken. Wiskundig gezien zijn hele getallen, kommagetallen
en breuken allemaal rationele getallen met verschillende notatiewijzen.
Qua verschijningsvormen in de realiteit is de opvallendste overeenkomst dat je zowel breuken als
kommagetallen tegenkomst als meetgetallen.
Bij onvoldoende begrip halen kinderen dit soort getallen al gauw door elkaar. Ze denken dan
1
bijvoorbeeld dat hetzelfde is als 0,5.
5
Een moeilijkheid is het gegeven dat het rekengetal 0,10 = 0,1. Dit lijkt misschien vanzelfsprekend,
maar dat is het voor kinderen zeker niet. Een manier om hier inzichtelijk mee om te gaan, is het
gebruik van verschillende ondermaten die de kinderen zelf kunnen beredeneren. Bijvoorbeeld: 0,1
meter is hetzelfde als 1 decimeter.

Van breuk naar kommagetal
1
Wanneer breuken als als kommagetal schrijft door de breuk op te vatten als een deling, kom je tot
7
de ontdekkingen dat de uitkomst van die deling een bijzonder uiterlijk heeft. Als je de uitkomst niet
via je rekenmachine maar hoofdrekenend bepaalt, is die ontdekking heel gemakkelijk te doen. Je
1
vindt de volgende sliert van decimalen die zichzelf herhaalt: 0,142857142857… De breuk heet een
7
repeterende breuk en de sliert 142857 heet het repetendum.

Van kommagetal naar breuk
Omgekeerd kan het ook, maar is het soms wat ingewikkelder. Als de breuk niet repeteert, is het
1 5 2 152 197 5
eenvoudig. Bijvoorbeeld: 3,152 = 3 + + + =3 = =3 . Je schrijft het getal
10 100 1000 1000 64 64
dus als een tientallige breuk die je verder vereenvoudigt.
Bij een repeterende breuk, bijvoorbeeld 0,461538461538… pas je de volgende handigheid toe.
Vermenigvuldig het gezochte getal net zo vaak met 10 als het repetendum lang is. Trek je van deze
uitkomst de gezochte breuk af, dan verdwijnen alle decimalen als sneeuw voor de zon! Wat overblijft
461538
is 999.999 keer het gezochte getal met als uitkomst 461.538. Daarmee is de breuk bekend:
999999
6
en die vereenvoudig je in een aantal stappen tot .
13

Breuken en procenten
Een breuk kan je zowel een absoluut getal als een operator zijn. Een breuk als absoluut getal kun je
weergeven als een punt op de getallenlijn, net als een heel getal. Een operator doet iets met een
getal, hoeveelheid of prijs.

Allerlei relaties moeten uiteindelijk in de vorm van declaratieve kennis beschikbaar zijn. Dit is parate
1 5
feitenkennis, zoals = = 0,5 = 1 : 2 en komt overeen met 50%. Dit soort ‘weetjes’ moeten snel
2 10
beschikbaar zijn, zodat kinderen ze flexibel kunnen toepassen bij het redeneren en rekenen met
breuken, verhoudingen, procenten en kommagetallen. In de bovenbouw moet de kennis van


2

, onderlinge relaties vlot worden uitgebreid. Allerlei weetjes oefen je daarom in. Al snel op formeel
niveau, maar eerst ook nog modelondersteunend.

Productief oefenen: kinderen produceren zelf opgaven (en weetjes).




Hoofdstuk 2 Verhoudingen
2.1 Verhoudingen zijn overal

Een verhouding is een recht evenredig verband tussen twee of meer getalsmatige of meetkundige
begrippen. Bijvoorbeeld de verhouding tussen het aantal jongens en meisjes op de pabo. Een
evenredig verband betekent dat als het ene getal zoveel keer zo groot (of klein) wordt, het andere
getal (of de andere getallen) ook zoveel keer zo groot (of klein) wordt.
Veel verhoudingen hebben betrekking op grootheden, zoals lengte, gewicht en inhoud.
Naar rato = naar verhouding.

Verschijningsvormen als snelheid en dichtheid zijn samengestelde grootheden. Snelheid kun je
bijvoorbeeld uitdrukken in het aantal afgelegde kilometers per uur (km/u). die km/u is samengesteld
uit de grootheid lengte, met de maateenheid kilometer, en de grootheid tijd, met de maat uur. Die
maat uur wordt bij het uitdrukken van snelheid op 1 gesteld.
Een andere veelvoorkomende verhouding is schaal. Deze kom je tegen op landkaarten en
plattegrond, maar ook bij speelgoed, schaalmodellen en natuurlijk in Madurodam. Een schaal geeft
de verhouding aan tussen de weergave van iets en de werkelijke grootte ervan. Bij de formele
schaalnotatie (bijvoorbeeld 1 : 80.000) noteren we beide getallen in dezelfde maateenheid.
Een percentage is een gestandaardiseerde verhouding: in totaal is op honderd gesteld. Bij niet-
gestandaardiseerde verhoudingen zijn daardoor lastiger te vergelijken dan procenten.
Het uitdrukken van zaken in verhoudingen helpt om informatie letterlijk, maar ook figuurlijk in
verhouding te zien, oftewel op waarde te kunnen schatten.

Wanverhoudingen worden vaak gebruikt om informatie over te brengen of om de aandacht te
trekken. Dit kom je bijvoorbeeld tegen in reclame, (politieke) cartoons en kunst.

Kwalitatieve en kwantitatieve verhoudingen
Kwantitatieve verhoudingen: de verhouding wordt uitgedrukt in een of meer getallen (1 op de 6). We
spreken van kwalitatieve verhoudingen als er geen getal aan te pas komt. Kwalitatieve verhoudingen
worden uitgedrukt in woorden. Bijvoorbeeld: de schoenendoos is naar verhouding te groot. Een
kwalitatieve verhouding is vaak een meetkundig verband. Andersom gaat het sowieso op: een
meetkundige verhouding is altijd kwalitatief. Het onderscheid tussen kwalitatieve en kwantitatieve
verhouding zegt ook iets over hoe de verhouding wordt waargenomen en tot uitdrukking wordt
gebracht.

Interne en externe verhoudingen
Als een verhouding één grootheid of eenheid betreft, spreek je van een interne verhouding.
Bijvoorbeeld: 1 op de 4 pabostudenten is een jongen. Een externe verhouding betreft twee
verschillende grootheden. Voorbeelden hiervan zijn afgelegde afstand in een bepaalde tijd en prijs
per gewicht.

Verhoudingsdeling en verdelingsdeling


3

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper lisannespabo. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €4,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 64450 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€4,99  91x  verkocht
  • (9)
In winkelwagen
Toegevoegd