100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Mathematics 1 (2DD40) Summary Q1 2021 €3,99
In winkelwagen

Samenvatting

Mathematics 1 (2DD40) Summary Q1 2021

 139 keer bekeken  3 keer verkocht

EN: Mathematics 1 (2DD40) is a course taught at Eindhoven University of Technology. It is a mandatory course for Bachelor Industrial Engineering students. The course is given in the first quartile of the first year. Mathematics 1 discusses the basics of logic, sets, linear algebra, series and proba...

[Meer zien]

Voorbeeld 3 van de 13  pagina's

  • 26 oktober 2021
  • 13
  • 2021/2022
  • Samenvatting
Alle documenten voor dit vak (1)
avatar-seller
IsabelRutten
Mathematics 1 (2DD40) Summary Q1
2021
Contents
Part I: Logic........................................................................................................................... 2
Part II: Sets ........................................................................................................................... 4
Part III: Linear algebra........................................................................................................... 6
Part IV: Series ....................................................................................................................... 9
Part V: Probability ............................................................................................................... 12




1
Mathematics 1 (2DD40) Summary Q1 2021 by Isabel Rutten

,Part I: Logic
There are different types of logic, we treat the main types proposition and predicate.
Proposition: statement which is either “true” or “false”
Basic statement: smallest unit that is true/false e.g. John sleeps
Composite statement: statements connected by and/or/not e.g. John sleeps and John does
not study. i.e. 𝑝: “John sleeps”. 𝑞: “John studies”. 𝑝 ∧ 𝑞: “John sleeps and John studies”
A proposition can have 2 truth values: False (also 0, F) and True (also 1, T).
Logical operators (also called connectives): ¬ not (negation), ∧ and (conjunction), ∨
inclusive or (disjunction), → implies (implication, from something false everything follows/the
truth follows from everything, (𝑝 → 𝑞) ↔ (¬𝑝 ∨ 𝑞) and (𝑝 → 𝑞) ↔ (¬𝑞 → ¬𝑝)), ↔ is
equivalent to (bi-implication, iff=if and only if, same as ← and → together). All are binary
except ¬ is unary. The priority of these signs is from first to last (¬ is strongest).
Truth table has left all possible values of the composing propositions and right the value of
the composite proposition, options increase exponentially with the number of propositions.
Tautology: (composite) statement that is true for all possible truth values of the variables
Equivalent: 2 statements are that if their truth columns in the truth table are equal
De Morgan: Negation of ∧ and ∨: ¬(𝑝 ∧ 𝑞) ↔ (¬𝑝 ∨ ¬𝑞) and ¬(𝑝 ∨ 𝑞) ↔ (¬𝑝 ∧ ¬𝑞).
Negation of →: ¬(𝑝 → 𝑞) ↔ (𝑝 ∧ ¬𝑞). Double negation cancels itself: ¬¬𝑝 ↔ 𝑝.
Every connective can be written with ∧, ∨ and ¬.




Fig. 1: Replacement rules Fig. 2: Step-by-step plan CNF and DNF
Every proposition can be written in Conjunctive Normal Form (CNF): of the form
(… ) ∧ … ∧ (… ) where between the brackets only ¬ and ∨ may appear.
Every proposition can be written in Disjunctive Normal Form (DNF): of the form
(… ) ∨ … ∨ (… ) where between the brackets only ¬ and ∧ may appear.
Incorrect reasonings: Do not make incorrect assumptions. An example does not suffice as
a proof. Correlation ≠ causation.
Paradox: 1 or more statements that lead to a contradiction.




2
Mathematics 1 (2DD40) Summary Q1 2021 by Isabel Rutten

, Predicate: quality / property, predicate logic is an extension of proposition logic with
variables (𝑥, 𝑦), predicates (descr. properties/relations), quantifiers, functions and constants.
Quantifiers: ∀ for all, universal quantifier; ∃ there exists, existential quantifier.
A quantifier binds a free variable, then it becomes a proposition, and is true or false.
Also: ∃! there exists exactly one.
Multiple quantifiers: e.g. ∀𝑥 ∃𝑦: 𝑦 < 𝑥 is true. Cannot interchange ∀ and ∃ without changing
the meaning of the statement, but multiple ∀’s or multiple ∃’s may be changed.
Negation of quantifiers:
∀𝑥: 𝜙(𝑥) where 𝜙(𝑥) is a certain property. Negation ¬(∀𝑥: 𝜙(𝑥)) means ∃𝑥: ¬𝜙(𝑥).
∃𝑥: 𝜙(𝑥) where 𝜙(𝑥) is a certain property. Negation ¬(∃𝑥: 𝜙(𝑥)) means ∀𝑥: ¬𝜙(𝑥).
To show that something does not hold for all x, 1 counterexample suffices. To show that
something is true, one needs a proof.
We can translate English sentences to the language of (predicate) logic like with 𝑀(𝑥, 𝑦): 𝑥 is
mother of 𝑦. E.g. ∀𝑦 ∃𝑥: 𝑀(𝑥, 𝑦) means everybody has a mother.
Quantifiers with extra condition: ∃𝑥 ∶ (𝑥 > 0) → ⋯ is the same as ∃𝑥 > 0 ∶ …
From something false everything follows.
Definition: agreement to give a certain name to something.
Theorem: (important) true statement/result
Corollary: theorem that (often quickly) follows from another.
Lemma: auxiliary theorem (preparation of more important result)
Proposition: theorem, but not very important
Conjecture: statement of which we suspect (but are not certain) that it is true
Defining a variable: : =, ≡
Hypothesis: statement that is preliminary assumed (assumption)
Proof techniques:
- Direct proof: based on the assumptions, results shown previously, etc.
- Counterexample: shows that statement cannot be proven / is false
- Proof with contraposition: instead of (𝐴) ⇒ (𝐵) we show ¬(𝐵) ⇒ ¬(𝐴)
- Proof of (𝐴) ↔ (𝐵) statement: show 2 parts: (𝐴) ⇒ (𝐵) and (𝐵) ⇒ (𝐴)
- Proof by contradiction: prove ¬(𝐴) by deriving a contradiction from (𝐴)




3
Mathematics 1 (2DD40) Summary Q1 2021 by Isabel Rutten

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper IsabelRutten. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €3,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 52510 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€3,99  3x  verkocht
  • (0)
In winkelwagen
Toegevoegd