100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary Molecular Principles of development €13,49   In winkelwagen

Samenvatting

Summary Molecular Principles of development

 38 keer bekeken  3 keer verkocht

Summary of the course principles of molecular biology. Information collected from the lectures, Q&A's, Computer practicals and book 'Principles of Development'.

Voorbeeld 4 van de 60  pagina's

  • Ja
  • 20 december 2021
  • 60
  • 2021/2022
  • Samenvatting
book image

Titel boek:

Auteur(s):

  • Uitgave:
  • ISBN:
  • Druk:
Alle documenten voor dit vak (2)
avatar-seller
elineedwards
Index
Very early development: ..................................................................................................................... 3
Gastrulation and mesoderm induction ................................................................................................... 4
Patterning of the germ layers.......................................................................................................... 4
Mesoderm induction: ...................................................................................................................... 4
How to put a break on the mesoderm induction ............................................................................ 5
Early development and germ layers in mouse ................................................................................ 5
Cleavage and formation of the blastula .......................................................................................... 6
A-P patterning in mice ..................................................................................................................... 7
Symmetry breaking by migration of visceral endoderm to anterior............................................... 7
Vertebrate axis formation ............................................................................................................... 8
Mesoderm induction in mouse ....................................................................................................... 8
In mice, the same BMP antagonist are common then in Xenopus ................................................. 9
Morphogenesis ...................................................................................................................................... 10
Cadherins ....................................................................................................................................... 10
Immunoglobulin superfamily ........................................................................................................ 11
Integrins ......................................................................................................................................... 11
Actin filaments............................................................................................................................... 12
Involution (Xenopus): .................................................................................................................... 12
Convergent extension ................................................................................................................... 12
Epiboly ........................................................................................................................................... 14
Gastrulation in zebrafish ............................................................................................................... 14
Morphogenesis ...................................................................................................................................... 15
A-P patterning and Hox gene function .......................................................................................... 15
Temporal order of somite formation ............................................................................................ 15
FGF signalling ................................................................................................................................. 16
Retinoic Acid (RA) .......................................................................................................................... 16
FGF and RA gradients during somite formation ............................................................................ 16
The clock and wavefront model .................................................................................................... 17
Molecular mechanism of segmentation ....................................................................................... 18
Hox gene function ......................................................................................................................... 18
Function of several members of Hox genes .................................................................................. 19
Ectopic expression of Hox genes ................................................................................................... 20
Molecular control of Hox gene expression ................................................................................... 20
Organogenesis ....................................................................................................................................... 21



1

, Antero-Posterior Patterning and Organogenesis .......................................................................... 21
AER is required for limb outgrowth............................................................................................... 21
FGF signaling for limb outgrowth .................................................................................................. 21
Proximo-distal patterning.............................................................................................................. 21
Zone of polarizing activity (ZPA) .................................................................................................... 22
Sonic Hedgehog signaling in limb (Shh)......................................................................................... 22
Dorso-Ventral patterning .............................................................................................................. 23
Gene regulation in limb development and disease....................................................................... 24
Germ cells .............................................................................................................................................. 26
The development of germ cells ..................................................................................................... 26
Meiosis .......................................................................................................................................... 29
Genomic imprinting ............................................................................................................................... 31
Fertilization............................................................................................................................................ 34
Fertilization of a mammalian egg .................................................................................................. 34
Calcium wave at fertilization ......................................................................................................... 36
Assisted reproductive technology ................................................................................................. 37
Determination of sexual phenotype ............................................................................................. 38
Determination sex of the germ cells ............................................................................................. 40
Summary: ...................................................................................................................................... 41
Dosage compensation ................................................................................................................... 41
How do cells count and choose chromosomes for inactivation?.................................................. 42
Cell differentiation................................................................................................................................. 44
Transcription regulation in cell differentiation ............................................................................. 44
Cells stop dividing during differentiation ...................................................................................... 48
Cell cycle and differentiation factors are biochemically linked .................................................... 48
Stem cells and their niche ............................................................................................................. 49
How would this work molecularly in response to physiological needs? ....................................... 50
Different modes of self-renewal contribute to tissue homeostasis.............................................. 51
Cellular (re)programming .............................................................................................................. 52
Another way to induce cells to change fate: ................................................................................. 54
Cloning by nuclear transfer ........................................................................................................... 54
Stem cells in homeostasis, repair & regenerative medicine ......................................................... 55
Genetic lineage tracing can be used to follow cell fate ................................................................ 56
Evo devo ................................................................................................................................................ 58




2

, - Specification: Cells have received sufficient information to develop according to their normal
fate, for example when isolated. However, they can still be re-specified to a different fate
when transplanted to a different position, meaning they are not yet determined.
- Determination: Stable change in fate (irreversible). Cells can no longer be re-specified.
- Differentiation: Cell become functionally different, become different cell types.
Very early development:
- Maternal to zygotic transition (MTZ)
o Mid-blastula stage (xenopus & zebrafish)
o Maternal RNA degradation → zygotic genome activation (ZGA)
o Mid-blastula transition: when transcription starts. MBT used in flies, fish, frogs
MBT: Transition at the mid-blastula stage, involving (1) onset of mbryonic transcription, (2)
cell cycle lengthening, (3) acquisition of cell motility

- Dorsal ventral body axis (after ZGA)
o Frogs: sperm entry (future ventral side) → cortical rotation (V→D) with wnt (11 and
5a) signals to the nucleus via B-catenin → accumulation of B-catenin in nuclei on the
future dorsal side of the blastula, VegT is also present to express the transcription
factor Siamosis which activate goosecoids (important in the process for making the
organizer) which defines the Nieuwkoop centre
When there is free β-catenin, normally, in the absence of Wnt, it is degraded by the APC/Axin/GSK-
3/CK1γ complex. This way β-catenin cannot be transported to the nucleus. When Wnt is present, Wnt
binds to Frizzled (Wnt receptor) and the APC/Axin/GSK-3/CK1γ complex binds to phosphorylated
LRP6/Frizzled. Β-catenin accumulates and binds in the nucleus to the transcription factor TCF.
Transcription takes place in the nucleus. On the future dorsal side, the Wnt signalling pathway is
activated. Wnt11b mRNA and other determinants (Dishevelled) relocate to prospective dorsal region.
There is dorsal β-catenin accumulation. The sperm entry point, which is random, will determine where
dorsal and ventral sides will be.

The Tcf3 transcription factor translocate its cofactor β-catenin to the nucleus.
• β-catenin can induce dorsal axis at ventral side
• Knockdown of fzd7 (Xfz7, Wnt receptor): Loss of dorsal structures
• Also: Wnt inhibitors ventral (pre-MBT

o Zebrafish: sperm entry not involved, no cortical rotation. Wnt 8a mRNA is
transported to the future dorsal side by oriented parallel arrays of microtubules and
enters the blastoderm (animal side). At the mid-blastula transition: B-catenin moves
into the nuclei of the cells of the dorsal yolk syncytial layer → accumulation → where
it induces the expression of a zygotic gene VegT encoding the transcription factor
Dharma → induction of the organizer/shield genes
Sia1 (frogs) and Dharma (zebrafish) is activated at the MBT in response to Wnt signaling.

Nieuwkoop centre (blastula stage) and Spemann Mangold organizer (gastrula stage). The
Nieuwkoop centre is the organizer of the organizer/shield.
Differences in mesoderm induction by dorsal and ventral vegetal regions.
The dorsal vegetal region of the Xenopus blastula, which contains the
Nieuwkoop center, induces notochord and muscle from animal cap tissues,
whereas ventral vegetal cells induce blood and associated tissues




3

, Gastrulation and mesoderm induction
➔ Fate map, gastrulation
➔ Mesoderm induction

Endoderm & ectoderm is maternally specified.

Patterning of the germ layers
Mesoderm induction: Vegetal region




Maternal VegT in the vegetal region activates the transcription of nodal-related genes (Xnr and
Derrière). The presence of nuclear β-catenin on the dorsal side stimulates nodal-related transcription,
resulting in a dorsal-to-ventral gradient in the Nodal related proteins. These induce mesoderm and, at
high doses, specify the Spemann organizer on the dorsal side(where the most intense Nodal signaling
is).

Mesoderm induction:
Mesoderm in Xenopus is specified by endoderm signals in prospective ectoderm. Mesoderm is not
maternally specified. How do you specify mesoderm?:
Bmp4 helps patterning the mesoderm, specifying ventral mesodermal fate.
• Ectodermin inhibits its signaling in the animal pole, important for ectodermal fate, by ubiquitinating Smad4 (the “co-Smad”). This
restricts both BMP and Nodal signaling to equatorial zone which then will form mesoderm.
• BMP signaling antagonists like noggin, chordin, Cerberus inhibit its signaling at the dorsal side (Organizer), restricting ventral fate to
ventral and lateral positions in the margin

Signals:

- Foxi1e (foxi1): activated ectoderm formation and controls cell position in Xenopus blastula
(prevent mixing)
- VegtT: specifies endoderm
- Ectodermin (Trimm33): specify ectoderm
- Vg-1 (gdf1) TGFB family: mesoderm induction

Transcription factors respond to TGFB family gradients and act as master regulators




4

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper elineedwards. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €13,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 79373 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€13,49  3x  verkocht
  • (0)
  Kopen