100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting literatuur statistische modellen 1

Beoordeling
-
Verkocht
6
Pagina's
17
Geüpload op
05-01-2022
Geschreven in
2019/2020

Volledige samenvatting van de literatuur die je moet kennen voor het tentamen.











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
Hoofdstuk 4, 5, 6, 7, 8 en 9.
Geüpload op
5 januari 2022
Aantal pagina's
17
Geschreven in
2019/2020
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Samenvatting Statistische Modellen
Statistical Methods for the Social Sciences (5th edition) – Alan Agresti
H4.4 Sampling Distributions Describe How Statistics Vary
Steekproef proces simulatie: laat zien hoe dicht een uitkomst (van de steekproef) ligt bij de populatie
proportie  steekproeven proportie ~ populatie proportie.
Als je dit 1000x doet zoek je naar een patroon in de resultaten  Normale verdeling.

Voorbeeld: stemmen voor republikeinen of democraten (Brown).
Als de helft van de populatie op Brown stemt, zouden we verwachten dat de steekproefuitkomsten
van 1824 stemmers tussen 46% en 54% voor Brown kiest (als bijv. de steekproefproportie binnen
0.04 van de populatieproportie van 0.50 valt ongeacht de waarde). Voorspelling van 60,5% van de
stemmen voor Brown is dan onwaarschijnlijk.

Sampling distribution (steekproevenverdeling) van een statistic (bijv. steekproeven proportie of een
steekproevengemiddelde): de waarschijnlijkheidsverdeling (Norm. Verdeeld) dat waarschijnlijkheden
laat zien voor mogelijke waarden die de statistic aan kan nemen.
Niet voor individuele observaties, maar voor waarden van een statistic uit die observaties.
Belangrijk in inferentiële statistiek!  het helpt te voorspellen hoe dichtbij een statistic ligt bij de
geschatte parameter.

Elke sample statistic heeft een sampling distribution.
Dus een sampling distribution voor een sample proportie, mediaan en gemiddelde apart.

H4.5 Sampling Distributions of Sample Means
ȳ = steekproevengemiddelde. Maar we weten nog niet hoe dichtbij het bij het populatiegemiddelde
µ zit, want we weten die waarde niet…
obv de spreiding, kunnen we het wel schatten!

Standaarddeviatie / standard error (SE) of ȳ  σȳ
De standaarddeviatie van de steekproevenverdeling is de standaardfout.

Mean and standard error (SE) of sampling distribution of ȳ
ȳ = µ (bij veel steekproeftrekkingen).
SE σȳ: beschrijft hoe veel ȳ varieert tussen verschillende steekproeven.
σ
 Formule:σ ȳ =
√n
Hoe groter n,
- hoe kleiner SE (want de breuk wordt kleiner als n, dus √ n, groter wordt)
- hoe kleiner de spreiding.
- Dat betekent dat de steekproeven proportie dichter bij de populatie proportie zit.
- Hoe kleiner sampling error (fout omdat je µ schat obv ȳ, terwijl ȳ maar een deel van de
populatie is).

Centrale limietstelling: steekproevenverdeling van een steekproevengemiddelde ȳ is bij benadering
een normale verdeling.
Interpretaties en implicaties:
- Steekproevenverdeling van ȳ heeft een klokvorm, zelfs als de populatieverdeling scheef of
discreet is. Hoe groter n, hoe meer klokvormig.




1

, - Wanneer hangt af van de mate van scheefheid (maar rond n=30). Maar
steekproevenverdeling van ȳ is dus bijna altijd klokvormig.
- Vanuit de normale verdeling kan je de steekproevenverdeling ȳ afleiden, want ȳ valt meestal
binnen 3σ van µ.

µ is vaak onbekend, maar toch voorspelt de steekproevenverdeling van ȳ de waarschijnlijkheid dat
het steekproefgemiddelde valt in een bepaalde afstand van µ (zelfs als die onbekend is).


H5 Statistical inference: estimation
H5.1 Punt- en intervalschatting
Parameter schatten op 2 manieren:
● Puntschatting: één getal
● Intervalschatting = betrouwbaarheidsinterval: interval van getallen rond een bepaald punt (met
foutenmarge).

Puntschatting
- Steekproefgemiddelde
- Steekproef mediaan

Unbiased:
- Als een steekproevenverdeling centreert rond de parameter (ȳ = µ)
- Als een steekproevenverdeling een kleine SE heeft (smalle verdeling).
Biased:
- Onder-/overschatting van de parameter.
- Steekproevengemiddelde is bruikbaar, steekpoef mediaan niet.
want ligt dichter bij population center.

Betrouwbaarheidsinterval gevormd door puntschatting +- foutenmarge
De informatie over de nauwkeurigheid van een puntschatting bepaalt de breedte van een
intervalschatting.

Intervalschatting = interval waarbinnen de parameter valt. De waarschijnlijkheid hiervan noem je het
betrouwbaarheidsinterval (bhi).

Hoe maak je die? Door een steekproevenverdeling van de puntschatting.
95% = statistic valt binnen 2σ  foutenmarge.

H5.2 Betrouwbaarheidsinterval voor een proportie
Bij categorische waarden (kwalitatief) bereken je de verhouding ervan.
π = populatie proportie (dus percentage!  deel/geheel * 100%)
π ¿ = steekproef proportie
Standaarddeviatie is wortel variantie: σ =√ π (1−π )

SE steekproefgemiddelde: σ ȳ =
σ
√n
, dus σ π ¿
σ
√n
=
√π (1−π )
n
Hoe groter n, hoe kleiner SE  steekproef proportie valt dan dichter bij populatie proportie.

95% valt binnen 2σ van het gemiddelde (=1.96 standaarddeviaties):



¿
95% kans dat π binnen het interval
¿ ¿
π +/- 1.96σ π en 5% niet. 2
¿
Maar σ π weten we niet, want π is
¿

π (1−π )

, ¿
Formule bhi: π +/- 1.96(SE)

Bhi controleren door z-score
Bhi voor populatie proportie π :
¿
π +/- z(se)
Se = √ π ¿ ¿ ¿

Hoe hoger bhi percentage, hoe hoger de kans dat de bhi de parameter omvat. Kleine kans op fouten.
Want de intervalschatting is preciezer en smaller.
¿
Stel 95% π +/- 1.96(se)
¿
Stel 99% π +/- 2.28(se)

z*(se) = foutenmarge  Is groter bij een grotere z-score (1..58).
Gegeven is Se = √ π ¿ ¿ ¿  dus hoe groter n, hoe kleiner foutenmarge, hoe kleiner het interval.

Dus factoren die van invloed zijn op de breedte van een bhi:
- Betrouwbaarheidslevel (95% of 99%): hoe groter, hoe groter de breedte van bhi.
- N: hoe groter, hoe kleiner de breedte van bhi.

Waarschijnlijkheidsfout (error of probability = α): de kans dat een bhi de parameter niet omvat, dus
1 – bhi. Dus stel bhi is 95%, dan is de waarschijnlijkheidsfout 5% - 0.05.


H5.3 Betrouwbaarheidsinterval voor gemiddelde
Bhi voor gemiddelde:
Puntschatting +/- foutenmarge
↓ ↓
µ=ȳ voor de populatie: z*se
σ
se steekproefgemiddelde: σ ȳ = maar σ weten we niet, dus dat wordt s.
√n
s
 se ¿
√n
T-verdeling
- Voor elke random sample size. Aanname dat steekproefverdeling van ȳ normaal verdeeld is,
zelfs bij kleine n.
 Niet meer betrouwbaar bij bhi voor gemiddelde… want er wordt gerekend met s ipv σ (wat al
minder nauwkeurig is) en dan ook nog eens met een kleine n…
Oplossing: z-score  t-score. bhi is dan breder.
Lijkt op elkaar, maar t-score komt nu van een normale verdeling is iets wijder is, met dikkere
staarten.
Eigenschappen:
- Klokvormig, symmetrisch, gemiddelde = 0  zelfde als normale verdeling.
- σ ivm normale verdeling iets groter dan 1.
Waarde hangt af van vrijheidsgraden df  df = n-1 (één minder dan n).
Hoe hoger df waarde, hoe meer de t-score in de buurt van de z-score komt en de verdeling
lijkt op een normale verdeling en is zelfs identiek bij df > 30.
Normale verdeling = df is oneindig.
- Dikkere staarten en meer verspreid.
- Foutenmarge voor betrouwbaarheidsinterval voor gemiddelde: t-score * se.

3

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
fnieuwkamp Rijksuniversiteit Groningen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
33
Lid sinds
6 jaar
Aantal volgers
26
Documenten
17
Laatst verkocht
1 maand geleden

3,0

3 beoordelingen

5
0
4
1
3
1
2
1
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen