H3: Stofwisseling in de cel
3.1 Chemie in cellen
In elke cel bruist het dag en nacht van chemische activiteit. Stoffen worden gevormd en afgebroken om de
cel op te bouwen en energie te vormen.
Metabolisme
Het geheel van chemische omzettingsprocessen in een organisme is de stofwisseling of het metabolisme.
Een groot deel van de stofwisseling vindt plaats in de cel. Cellen nemen stoffen op uit de omgeving en
zetten die weer om in andere stoffen. Die omzettingen zijn nodig voor de opbouw van de cel en de
energievoorziening.
In het lichaam vinden verschillende processen plaats die altijd doorgaan, zoals de hartslag en de
ademhalingsbeweging. Alle stofwisselingsprocessen die in rust doorgaan worden gerekend tot het basale
metabolisme.
Energierijke organische stoffen
Cellen bestaan uit organische en anorganische stoffen. De moleculen van organische stoffen bevatten één
of meer ketens van koolstofatomen. Een organische stof bevat daarnaast waterstofatomen en vaak ook
zuurstofatomen. Om de binding tussen koolstof en waterstofatomen tot stand te brengen in energie nodig.
Als de binding wordt verbroken komt die energie weer vrij. De energie die in de atoombindingen van dat
soort stoffen is opgeslagen wordt chemische energie genoemd. Anorganische stoffen bestaan uit kleine,
eenvoudig gebouwd moleculen die weinig energie bevatten.
Assimilatie en dissimilatie
Stofwisselingsprocessen zijn in te delen in assimilatie- en dissimilatieprocessen. Assimilatie is de opbouw
van organische moleculen uit kleine moleculen. Daarvoor is energie nodig. Dissimilatie is de afbraak van
grote organische moleculen in kleinere moleculen. Daarbij komt energie vrij.
Alleen autotrofe organismen (die zelf de organische stoffen produceren die ze nodig hebben) zoals
schimmels en cyanobacteriën zijn in staat om glucose te vormen uit anorganische stoffen zoals
koolstofdioxide en water. Dat heet koolstofassimilatie. De organische stof glucose is vervolgens de basis
voor de vorming van koolhydraten, vetten, eiwitten en DNA. Dat is voortgezette assimilatie. Bij
voortgezette assimilatie ontstaan grote organische moleculen met energierijke bindingen. Door
dissimilatie van die moleculen komt veel energie vrij voor celprocessen, zoals assimilatie en
stoffentransport. Voortgezette assimilatie komt voor bij zowel autotrofe als heterotrofe organismen.
Energiedragers
Moleculen van de stof ATP (adenosinetrifosfaat) transporteren chemische energie naar plaatsen in de cel
waar die energie nodig is. ATP bestaat uit adenosine, wat opgebouwd is uit adenine en ribose, en drie
fosfaatgroepen. In de binding tussen de fosfaatgroepen zit veel energie. Door de binding met een fosfaat
atoom te breken komt veel energie vrij, en ontstaat het molecuul ADP, adenosinedifosfaat. De energie die
beschikbaar komt kan worden overgedragen aan stofwisselingsreacties en processen in de cel. Door de
binding van een fosfaatgroep aan ADP ontstaat weer energierijk ATP. Die reactie wordt fosforylering
genoemd. Bij de afsplitsing van nog een fosfaat atoom van ADP ontstaat AMP, adenosinemonofosfaat. In
reactievergelijkingen wordt een los fosfaat atoom vaak weergegeven met Pi (‘inorganic phosphate’).
, ATP wordt gevormd bij de fotosynthese in chloroplasten en bij verbranding in mitochondriën. Daarbij
worden lichtenergie en chemische energie uit glucose omgezet in de chemische energie van ATP.
Andere energiedragers zijn de chemisch en aan ATP verwante moleculen NAD+ (nicotinamide-adenine-
dinucleotide) en NADP+ (nicotinamide-adenine- dinucleotide-fosfaat).
3.2 Enzymen
In cellen worden stoffen en energie omgezet. Elke omzetten vereist een eigen stukje gereedschap, een
enzym, die de omzetting makkelijker maakt.
Bouw en werking
In cellen worden voortdurend stoffen opgebouwd en afgebroken. Die processen verlopen niet vanzelf, of
ze verlopen heel langzaam. Enzymen zijn eiwitten die chemische omzettingsprocessen katalyseren:
processen mogelijk maken of versnellen zonder zelf te worden verbruikt. Met enzymen kan de cel
stofwisselingsprocessen sturen.
Een enzymmolecuul heeft een ruimtelijke structuur met veel knikken en lussen:
Het deel van het molecuul waar de reactie plaatsvindt heet het actieve centrum. Dit deel heeft een
specifieke ruimtelijke structuur. De stof waar een enzym op inwerkt heet het substraat. Het
substraatmolecuul past perfect in het actieve centrum. Doordat het substraatmolecuul en het enzym
perfect met elkaar passen, zijn enzymen substraatspecifiek: elk enzym kan slechts inwerken op één stof of
één groep stoffen. Elke reactie vereist een eigen enzym.
Zodra een substraat aan een enzym bindt ontstaat er een enzym-substraatcomplex en vindt er een reactie
plaats. In het substraat worden atoombindingen verbroken en worden er nieuwe bindingen gevormd. Na
de reactie laat het ontstane molecuul, het product, los van het actieve centrum en kan het enzym opnieuw
gaan binden. Het enzym verandert niet tijdens de reactie.
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper romyssamenvattingen. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €2,99. Je zit daarna nergens aan vast.