100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting Tijdreeksanalyse (FEB23001) €6,99
In winkelwagen

Samenvatting

Samenvatting Tijdreeksanalyse (FEB23001)

 1 keer verkocht

Uitgebreide samenvatting van Tijdreeksanalyse (econometrie EUR)

Voorbeeld 2 van de 14  pagina's

  • 8 september 2022
  • 14
  • 2020/2021
  • Samenvatting
Alle documenten voor dit vak (1)
avatar-seller
LeonVerweij
Week 1
Autocorrelation
The correlation between 𝑦! and lagged values of the variable itself, 𝑦!"#
First-order autocorrelation
Because 𝑦"! and 𝑦"!"$ , and the sample variances are almost the same, we can compute the
∑$
!%&('! "'
()('!"# "'()
first-order autocorrelation as 𝜌$$ = ∑$ ()&
!%#('! "'
𝑘!* order autocorrelation
The 𝑘!* order autocorrelation is 𝜌$# = 𝛾$# /𝛾$+ , where 𝛾$# is an estimate of the 𝑘!* order
$
autocovariance, that is, 𝛾$# = , ∑,!-#.$(𝑦! − 𝑦")(𝑦!"# − 𝑦"). The set of all autocorrelations 𝜌$#
for 𝑘 = 1,2, … is called the empirical autocorrelation function (EACF)
White noise
A time series 𝜀! is white noise if it has the following three properties:
- 𝐸(𝜀! ) = 0 𝑡 = 1,2, … , 𝑇
/) /
- 𝐸(𝜀! = 𝜎 𝑡 = 1,2, … , 𝑇
- 𝐸(𝜀0 𝜀! ) = 0 𝑠, 𝑡 = 1,2, … , 𝑇 and 𝑠 ≠ 𝑡
Information set
The information set at time 𝑡 − 1, 𝒴!"$ = {𝑦$ , 𝑦/ , … , 𝑦!"$ }, is the available history of a time
series up to time 𝑡 − 1 is
Conditional distribution
The conditional distribution is 𝑓(𝑦! |𝒴!"$ ). If we know 𝑔(∙) and also the values of the
parameters 𝜃 isn the general time series model. 𝑦! = 𝑔A𝑦!"$ , 𝑦!"/ , … , 𝑦!"1 ; 𝜃C + 𝜀! , then the
conditional distribution 𝑓(𝑦! |𝒴!"$ ) of 𝑦! is the same as the distribution of 𝜀!
First order autoregressive model
The first order autoregressive (𝐴𝑅(1)) model is given by 𝑦! = 𝜙$ 𝑦!"$ + 𝜀! ,
𝑡 = 1,2, … , 𝑇. So, 𝑦! = 𝜙$! 𝑦+ + 𝜙$!"$ 𝜀$ + ⋯ + 𝜙$ 𝜀!"$ + 𝜀! = 𝜙$! 𝑦+ + ∑!"$ 2
2-+ 𝜙$ 𝜀!"2 , where 𝑦+
is a pre-sample starting value
Effect types
When |𝜙$ | < 1, 𝜙$2 → 0 as 𝑖 increases, then the shock 𝜀!"2 has a transitory effect on the time
series 𝑦! . When 𝜙$ exceeds 1, the effect of shocks 𝜀!"2 on 𝑦! increases with 𝑖, then the time
series is called explosive. When 𝜙$ = 1, we have 𝑦! = 𝑦+ + ∑!"$ 2-+ 𝜀!"2 , where 𝜀!"2 has the
same impact on all observations 𝑦!"2.* , ℎ = 0,1, … . Shocks are said to have permanent
effects
(Un)conditional mean
Consider the 𝐴𝑅(1) model with |𝜙$ | < 1. Given that 𝜀! is a white noise series with
𝐸(𝜀! |𝒴!"$ ) = 𝐸(𝜀! ) = 0, the conditional mean of 𝑦! is equal to 𝐸(𝑦! |𝒴!"$ ) = 𝜙$ 𝑦!"$ .
The unconditional mean of the time series is 𝐸(𝑦! ) = 𝜇 = 𝜙$! 𝑦+ and as 𝑡 → ∞, we find
𝐸(𝑦! ) = 0
Intercepts
We can change the (unconditional) mean to nonzero by including an intercept 𝛿 in the model,
3
so 𝑦! = 𝛿 + 𝜙$ 𝑦!"$ + 𝜀! = 𝛿 ∑!"$ 2 ! !"$ 2
2-+ 𝜙$ + 𝜙$ 𝑦+ + ∑2-+ 𝜙$ 𝜀!"2 . As 𝑡 → ∞, 𝐸(𝑦! ) = $"4 . We
#
have that 𝛿 = 𝜇(1 − 𝜙$ ), so 𝑦! − 𝜇 = 𝜙$ (𝑦!"$ − 𝜇) + 𝜀!
Stationarity
The 𝐴𝑅(1) model can be written as 𝑦! = 𝜀! + 𝜋$ 𝜀!"$ + 𝜋/ 𝜀!"/ + ⋯, where 𝜋 = 𝜙$2 and 𝜀! is
a white noise time series. If |𝜙$ | < 1, 𝜋2 → 0 when 𝑖 increases, then the 𝐴𝑅(1) model is called
stationary. It means that the unconditional mean, unconditional variance and
autocorrelations of 𝑦! are constant over time. In 𝐴𝑅(1) model, |𝜙$ | < 1 is a necessary and
sufficient condition for stationarity

, Correlation 𝑦! and shocks
It holds that
- 𝐸(𝑦! 𝜀! ) = 𝜎 /
- 𝐸A𝑦! 𝜀!.5 C = 0 for 𝑗 = 1, 2, …
- 𝐸(𝑦! 𝜀!"# ) ≠ 0 for 𝑘 = 1, 2, …
Variance
The variance of 𝑦! is 𝛾+ = 𝐸 [(𝑦! − 𝐸 [𝑦! ])(𝑦! − 𝐸 [𝑦! ])]. If we assume that 𝐸(𝑦! ) = 0 or
6&
𝛿 = 0, then 𝛾+ = $"4& when |𝜙$ | < 1. Since 𝑉(𝑦! |𝒴!"$ ) = 𝜎 / , we have that the larger |𝜙$ |,
#
the larger 𝛾+ becomes relative to 𝑉(𝑦! |𝒴!"$ )
Autocovariance
The first order autocovariance for an 𝐴𝑅(1) time series is 𝛾$ = 𝜙$ 𝛾+ . The 𝑘!* order
autocovariance of time series 𝑦! is 𝛾# = 𝐸 [(𝑦! − 𝐸 [𝑦! ])(𝑦!"# − 𝐸 [𝑦!"# ])] =
𝐸 [𝜙$ (𝑦!"$ − 𝜇)(𝑦!"# − 𝜇)] = 𝜙$ 𝛾#"$ , for 𝑘 = ⋯ , −2, −1, 0, 1, 2, …
Autocorrelation function (ACF)
7 4 7
The 𝑘!* order autocorrelation of 𝑦! is 𝜌# = 7' = #7'"# = 𝜙$ 𝜌#"$ , so 𝜌# = 𝜙$# . The
( (
autocorrelations of an 𝐴𝑅(1) model with |𝜙$ | < 1, thus decline exponentially towards zero.
It holds that 𝜌+ = 1 and 𝜌"# = 𝜌# for 𝑘 = 1, 2, ….
Autocorrelation with unit roots
The unit root case with 𝜙$ = 1 gives 𝑦! = 𝑦!"$ + 𝜀! . Then we have 𝐸(𝑦! ) = 0,
!"#
𝛾+,! = 𝐸(𝑦!/ ) = 𝑡𝜎 / and 𝛾#,! = 𝐸(𝑦! 𝑦!"# ) = (𝑡 − 𝑘)𝜎 / , so 𝜌#,! = ! , 𝑘 > 0. When 𝑡
becomes large, all (theoretical) autocorrelations 𝜌#,! become equal to 1
Effect sign 𝜙$
When 0 < 𝜙$ < 1, all correlations are positive and decline monotonically. When
−1 < 𝜙$ < 0, all even correlations are positive, all odd correlations are negative, and decline
monotonically towards zero
Lag operator
The so-called lag operator 𝐿 is defined by 𝐿# 𝑦! = 𝑦!"# for 𝑘 = ⋯ , −2, −1, 0, 1, 2, …. 𝐿 can be
used in products and ratios, and in adding and subtracting operations
𝐴𝑅(𝑝) model
If we include 𝑝 lagged variables, we get 𝑦! = 𝜙$ 𝑦!"$ + ⋯ + 𝜙1 𝑦!"1 + 𝜀! . This is an
autoregressive model or order 𝑝. This can be written as 𝜙1 (𝐿)𝑦! = 𝜀! , where 𝜙1 (𝐿) is the AR-
polynomial in 𝐿 of order 𝑝: 𝜙1 (𝐿) = 1 − 𝜙$ 𝐿 − ⋯ − 𝜙1 𝐿1 . The characteristic polynomial is
𝜙1 (𝐿), but with 𝑧 filled in. Roots of this polynomial determine whether the effects of shocks
are transitory or permanent
Roots
The characteristic polynomial of the 𝐴𝑅(1) model is given by 𝜙$ (𝑧) = 1 − 𝜙$ 𝑧, and its root
is 𝑧 = 𝜙$"$ . When 𝜙$ = 1, this solution equals 1, and in that case the AR(1) polynomial is said
to have a unit root (and shocks have permanent effects). When |𝜙$ | < 1, the root of (43)
exceeds 1 (and shocks have transitory effects). Since higher order 𝐴𝑅(𝑝) models have
complex roots, the solution to 𝜙$ (𝑧) = 1 − 𝜙$ 𝑧 is said to be “outside the unit circle” when
|𝜙$ | < 1
Moving average (MA) model
The MA model of order 𝑞, 𝑀𝐴(𝑞), is 𝑦! = 𝜀! + 𝜃$ 𝜀!"$ + ⋯ + 𝜃9 𝜀!"9 . We may rewrite any
𝐴𝑅(𝑝) model in MA form, 𝑦! = 𝜙1 (𝐿)"$ 𝜀! . In an 𝑀𝐴(2) model the variance equals
𝛾+ = (1 + 𝜃$/ + 𝜃// )𝜎 / . For an 𝑀𝐴(𝑞) model it holds that 𝛾# = A∑9"# /
2-+ 𝜃2 𝜃2.# C𝜎 for
𝑘 = 0, 1, … , 𝑞 and 𝛾# = 0 for 𝑘 > 𝑞, with 𝜃+ = 1

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper LeonVerweij. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 64450 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,99  1x  verkocht
  • (0)
In winkelwagen
Toegevoegd