100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Exam Summary/Samenvatting Multivariate Data Analysis (MVDA) Statistics €6,49   In winkelwagen

Samenvatting

Exam Summary/Samenvatting Multivariate Data Analysis (MVDA) Statistics

 36 keer bekeken  2 keer verkocht

This document covers all the material needed for the MVDA exam. It is condensed so it can be used for the cheat sheet.

Voorbeeld 4 van de 38  pagina's

  • 7 november 2022
  • 38
  • 2022/2023
  • Samenvatting
Alle documenten voor dit vak (5)
avatar-seller
evalindekuyper
MVDA Examination Summary
Exam: 21.06.2022 @ 13:00 - 15:00
To test a research question (for a population):
● Take a sample from the population of interest
● Measure the relevant constructs → data = variables
● Apply appropriate statistical technique


3 levels of measurement are relevant
1. NOM = nominal level only distinguishes categories (no therapy, psycho-dynamic, exposure)
2. INT = interval level if intervals meaningful (weight, height, IQ, BDI (quasi-interval))
3. BIN = binary variable has 2 categories: can be NOM or INT (pass/fail, male/female)


Which technique, depends on measurement level of variables:




Four techniques of weeks 1 to 4 in diagrams:




Week 1 - Multiple Regression Analysis
Can Y be predicted from X1 and/or X2? (Y , X1, X2 = INT)
Model that works really well: dependent variable Y is a linear function of predictors X1 and X2


Regression Model = provides a function that describes the relationship between one or more
independent variables and a response, dependent, or target variable


Simple Regression → Yi = b∗0 + b∗1 X1i + ei

,Multiple Regression → Yi = b∗0 + b∗1 X1i + b∗2 X2i + · · · + b∗k Xki + ei
● b∗0 is the (population) regression constant
● b∗1 , b∗2 ,..., b∗k are (population) regression coefficients
● X1i, X2i,..., Xki and Yi are the scores on X1, X2,..., Xk and Y of individual i
● ei is a residual (= error)
The parameters b∗0 , b∗1 , b∗2 ,..., and b∗k need to be estimated
from the data (sample). Linear model: least squares estimation (e.g.
SPSS)


Linear model with one predictor: simple regression - fit a straight line




(where the line leaves the Y axis (BDI), that is the Constant point)


Best prediction (least squares) if the sum of squared differences:


Why bother with the regression model? → the regression model
describes relationship between depression (Y ) and life events (X1)
and coping (X2) in the population & it can be used to predict the
depression score of individuals that are not in the original
study/sample


Null Hypothesis = always predicts no effect or no relationship between variables
Test with →
Alternative Hypothesis = states your research prediction of an effect or relationship
Sum of squares related by:




How good is prediction? → statistic: is the
coefficient of determination

, ● R = multiple correlation coefficient
○ R is Pearson correlation between Y and combi of X1 and X2
● Value between 0 and 1 R2 reflects how much variance of Y is explained by X1 and X2
○ (VAF = variance accounted for)
● More general: R2 reflects how good the linear model describes the observed data
Another formula is:


Strong relationship → if most observed scores Yi are close to the
regression plane Yˆi
Weak relationship → if many observed scores Yi are far away from the
regression plane Yˆi


How important is a predictor?
^ is the semipartial correlation of Y and X1 corrected for X2
→ is ‘Part’ in SPSS, always a value between 1 and -1
→ ry2(1.2) reflects how much variance of Y is uniquely (only) explained by X1


Beta β = (of regression coefficient) reflects importance of the coefficient: predictors with high
absolute bet are more important
Partial Correlation = (of a predictor) reflects how much variance of Y is explained by the
predictor that is not explained by other variables in the analysis


Partial VS Semipartial Correlation
Dependent variable Y and predictors X1 and X2:
● V1 is part explained by X1
● V2 is part explained by X2
● W is part explained by X1 and X2
● U is unexplained part of Y


For the figure, the squared semipartial correlation is
while the squared partial correlation is


Assumptions of the regression model:

, ● Are needed for sampling distribution of coefficients → test
value against e.g. 0
● Can be expressed in terms of residuals ei
When assumptions are violated:
● Usually no effect on estimates of coefficients
● Effects standard errors of coefficients → wrong conclusions
about significance
Assumptions characterise the population, not the sample:
● Cannot be tested directly
● Check assumptions for the sample → if violated in sample,
unlikely to be true in population
● Check using graphical tools (useful, lack objectivity) and tests




If assumptions are violated:
● Usually no effect on estimates of coefficients
● Effects standard errors of coefficients
→ affects value of test statistics (F-value, t-values)
→ affects p-values
→ wrong conclusions about H0 and significance


Using the linear model:
● Variables have interval level of measurement
● Dependent variable is a linear combination of predictors


Testing coefficients:
Homoscedasticity = variance of residuals is constant across predicted values
● Heteroscedasticity affects standard errors of regression coefficients bj
● Homoscedasticity usually does not hold exactly
Independence of Residuals ei = individuals respond independently of one another
Normality = test for small samples, with large samples central limit theorem

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper evalindekuyper. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 82871 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,49  2x  verkocht
  • (0)
  Kopen