100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary Statistics/Statistiek 1 VU €8,49
In winkelwagen

Samenvatting

Summary Statistics/Statistiek 1 VU

 38 keer bekeken  3 keer verkocht

Summary of all lectures, examples and chapters required for Statistics 1/Statistiek 1.

Voorbeeld 3 van de 19  pagina's

  • Nee
  • All chapters required by the course.
  • 15 januari 2023
  • 19
  • 2017/2018
  • Samenvatting
book image

Titel boek:

Auteur(s):

  • Uitgave:
  • ISBN:
  • Druk:
Alle documenten voor dit vak (63)
avatar-seller
evabus
Statistics 1 Most important goal inferential statistics:
Summary – exam 20 dec 2017
To estimate or predict a population value
based on a sample
Chapter 1 – Definition of Statistics
- Statistics – the science of collecting, organizing and interpreting numerical facts, which we call data
2 types
- Descriptive statistics – data of the sample described by numbers/tables/graphs
- Inferential statistics – predictions about the general population based on data from the sample

We use parameters to describe the population
We need good (reliable & valid) data!!!

Different ranges of variables
- Discrete range (# of siblings)
- Continuous range (height)
if it’s not infinite, it’s
discrete!
Chapter 2/3 – Inferential statistics
Inferential statistics: differences between sample statistic and parameter
- Natural variation between samples (reliability)
- Problems/mistakes within the sample

Sample risk
1. Sampling error difference due to randomness
2. Sampling bias difference due to selective participation (e.g. voluntary participation)
3. Response bias difference due to wrong answers/inadequate measures
4. Non-response bias difference due to no answers
1 = reliability, 2 3 4 = validity
Solution: A random sample of sufficient size that generates data for everyone approached, with correct
responses on all items for all subjects.

Sampling methods
1. Simple random sampling
every combination of participants has the same likelihood to become the sample
• Step 1: choose a sampling frame
• Step 2: draw a random sample of n participants
2. Systematic random sampling (= dated)
not every combination has an equal chance to become the sample. The 1st participant is random,
than after every k participants
• Step 1: choose a sampling frame
• Step 2: decide the step size k=N/n
• Step 3: choose random the first participant and subsequently choose from every group the
participant with this number (k)
3. Stratified random sampling
Draw a sample within each stratum.
Stratum = subset of population with a certain characteristic that is relevant to your study
• Step 1: choose a sampling frame
• Step 2: divide the population in strata
• Step 3: draw random from every stratum

, 4. Cluster sampling
Draw a random sample of clusters
• Step 1: choose a sampling frame
• Step 2: divide the population in clusters
• Step 3: draw random a number of clusters
• Step 4: choose all subjects of these clusters
5. Multi-stage sampling
combination of 1-4 (this example is combo of simple random sampling & cluster sampling):
• Step 1: choose a sampling frame
• Step 2: divide the population in clusters
• Step 3: Draw random a number of clusters
• Step 4: draw random participants of these clusters
• A good and well know example is PISA – education level of 15 y/o in different countries
o Simple random schools, students
o Stratified school characteristics
o Cluster geographical location
o Multi-stage 1. schools, 2. Students


Chapter 2/3 – Descriptive statistics
3 dimensions are important
- Central tendency (typical observation)
- Spread/dispersion/variability (variability in observations)
- Position (relative position of observations)

Categorical variables
Usually presented in
- table with frequency distribution
- bar graph
o Central tendency measure = mode “most frequent value”
o Variability measure = variance ratio

Quantitative univariate variable
- Table with frequency distribution
- Histogram
- Stem-and-leaf plot
o Central tendency measures average “sum observations/n”
median “value of observation in the middle”
Mode “most frequent observation”
o Variability measures range “difference between maximum and minimum”
standard deviation “a measure for the typical spread in the data”
interquartile range “difference between Q3 and Q1”
o Position measures percentile/quartile/minimum & maximum/median/z-score

Boxplot explained
- Middle line = median
- Upper & lower whisker (----|) = upper & lower 25%
- “box” = middle 50%
- edges box = upper quartile value & lower quartile value
- dot = outlier

, Bivariate statistic
Ø Bivariate statistics reflect the degree of association between two variables
- Table/figure
o 2 categorical variables: contingency table
o 2 quantitative variables: scatter plot
- Measures
o 2 categorical variables: relative risk and odds ratio
o 2 quantitative variables: covariance, correlation and regression coefficient

Chapter 4 – Probability distribution
Probability rules
- p(A)
- p(not A) = 1 – p(A)
- p(A or B) = p(A) + p(B)
- p(A and B) = p(A) x p(B given A) probability that both A AND B will occur
o p(A and B) = p(A) x p(B) if A and B are independent

Discrete & continuous probability distributions
- Discrete (= finite set of possible values)
o e.g. what do you think is the ideal number of children for a family?
o Probability for each of these separate values can be calculated
- Continuous (= infinite set of possible values)
o e.g. What is your average commuting time to work?
o Probability to intervals of values can be calculated

3 main distributions
1. Population distribution
o Definition: statement of all different values that a particular variable can have & the
frequency with which they make up a population that is observed/expected to be observed
o Example – dutch female height
§ Mean µ
§ Standard deviation s
§ Size N
2. Sample distribution
o Definition: statement of all different values that a particular variable can have & the
frequency with which they make up a sample that is actually observed
o Example – dutch female height
§ Mean 𝑦
§ Standard deviation s
§ Size n
3. Sampling distribution
o Definition: the probability distribution for the sample proportion. Interpret as the result of
repeatedly draw a sample of size n.
o Example – dutch female height
§ Mean 𝜇#
§ Standard deviation/error 𝜎#
§ Size ∞

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper evabus. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €8,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 52510 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€8,49  3x  verkocht
  • (0)
In winkelwagen
Toegevoegd