100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Complete Summary of Customer Analytics €6,39   In winkelwagen

Samenvatting

Complete Summary of Customer Analytics

 90 keer bekeken  3 keer verkocht

Complete summary of the course Customer Analytics, including notes from lectures and tutorials and examples (in italics)

Voorbeeld 3 van de 30  pagina's

  • 8 maart 2023
  • 30
  • 2020/2021
  • Samenvatting
Alle documenten voor dit vak (1)
avatar-seller
sachalena
Lecture 1 - Uncertainty
Customers are assets that generate profits over time. Marketing used to be product-centric and
transaction-focused, and is now customer-centric and relationship-focused.

Customer lifecycle:
1. Customer acquisition: how customers are born / first contact with the firm
2. Customer development: change in behavior over time; buying more (upselling) or different
things (cross-selling)
3. Customer retention: preventing customer death or churn

Testing
Testing: obtaining more information before committing a large amount of resources, and (hence)
reducing the risk of possible failure
1. Randomly select some customers (test sample) (size = n)
2. Send these customers a mailing, and collect and analyze responses
3. Use results to decide whether to send to the rest of the population ( rollout sample) (size =
N - n)

Sample should be representative for people outside of the sample (randomized sampling).

Test results
→ Assume a test sample of size 5000; thus, randomly selecting 5000 customers and sending them the
mailing
→ Results of test mailing
→ 175 out of 5000 respond; estimated response rate: p̂ =
→ Margin/profit per response is €50 (assume): m = 50
→ Should the rollout be done? How much profit is expected if it is sent to the rest (rollout sample)?

E(rollout profit) = (N - n)(m * p̂ - c)
→ (N - n): number of customers
→ (m * p̂ - c): profit per customer
→ m: margin (profit) per response
→ p̂ : estimate of response rate
→ c: cost of marketing
→ Only roll out when E(rollout profit) > 0 (thus, p̂ > c/m)

Option Value
When the expected rollout profit is positive, it is rolled out to the rest of the sample.
Roll out when: E(rollout profit) > 0 (p̂ > c / m)
→ Bad campaigns are only tested, good campaigns are tested and rolled out (when profit per customer is
positive = p̂*m*c)

, 1. Assume perfect information
2. Test predicts
→ Success (p = 0.05); m * p - c = 1.00
→ Failure (p = 0.01); m * p - c = -1.00
3. Success occurs 30% of the time

Limiting losses to the test means only losing €5000
No-test option = €0
Test = €11,500 (if cost of running the test would be
lower, you wouldn’t do it)


Uncertainty
p: true unobserved population response rate
Sample mean estimate: (what we observe)


Standard error:


Central limit theorem: for a large enough sample, distribution of the sample mean is approximately
normal



Probability of a mistake:




Bootstraps
Bootstrap: sample with replacement from the original sample, using the same sample size (imaging
what other samples would give you)
→ b = 1 gives you B bootstrap samples (some are sampled often, some aren’t at all)
1. Resample with replacement


2. Calculate estimate using this
resample set

, → You now have a distribution




Test whether the estimated




Where



Alfa = response rate < breakeven (type I error; rollout while
you shouldn’t)


Instead of using this “all or nothing” approach, we can also use the test to identify profitable groups
and target mailing to them (test sample, targeted rollout sample (sent), untargeted rollout sample
(not sent)).

Data to use:
Most common
1. Demographics (gender, ethnicity, age, income, family size, occupation, marital status,
education, homeowner/renter, length of residence)
2. Transaction data (past purchases, amounts, dates, discounts)
Best, but unavailable for prospects
3. Marketing (past mailings, content mailings, date, costs)
4. Survey data (psychographics, attitudes, interests, activities)

Even if the untargeted mailing campaign would be profitable, selecting customers usually is more
profitable.

Thus, testing resolves (some, usually not all) uncertainty about the benefit of marketing. Testing
gives the option to rollout if test results are positive, and is even more valuable when you use it to
target better.
5.

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper sachalena. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,39. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 83637 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,39  3x  verkocht
  • (0)
  Kopen