Table of contents
Lecture 1: The chain rule ......................................................................................................................... 7
Differentials ......................................................................................................................................... 7
The differential of a function............................................................................................................... 7
Application........................................................................................................................................... 7
The chain rule ...................................................................................................................................... 7
The chain rule (general version) .......................................................................................................... 9
Implicit differentiation ........................................................................................................................ 9
Lecture 2: Directional derivates ............................................................................................................ 12
Directional derivatives....................................................................................................................... 12
The gradient vector ........................................................................................................................... 12
Function of three variables ............................................................................................................... 12
Maximizing the directional derivative ............................................................................................... 13
Tangent planes to level surfaces ....................................................................................................... 13
Lecture 3: Local maximum and minimum values .................................................................................. 14
Local maximum and minimum values ............................................................................................... 14
Critical points ..................................................................................................................................... 14
The second derivates test ................................................................................................................. 15
Examples........................................................................................................................................ 15
Lecture 4: Absolute maximum and minimum values ............................................................................ 17
Closed and bounded sets .................................................................................................................. 17
The extreme value theorem .............................................................................................................. 17
Absolute maximum and minimum values ......................................................................................... 17
Lecture 5: Double integrals over rectangles.......................................................................................... 21
Riemann sums ................................................................................................................................... 21
The midpoint rule .......................................................................................................................... 21
Iterated integrals ............................................................................................................................... 22
Double integrals over rectangles....................................................................................................... 22
Average value ................................................................................................................................ 23
Lecture 6: Double integrals over general regions ................................................................................. 24
Double integrals over general regions .............................................................................................. 24
Regions of type I ................................................................................................................................ 24
Regions of type II ............................................................................................................................... 24
More general regions ........................................................................................................................ 25
Double integrals over general regions .............................................................................................. 27
, Area of a region ................................................................................................................................. 30
Example ......................................................................................................................................... 30
Lecture 7: Double integrals in polar coordinates .................................................................................. 31
Polar coordinates .............................................................................................................................. 31
Double integrals in polar coordinates ............................................................................................... 31
Example 1 ...................................................................................................................................... 32
Example 2 ...................................................................................................................................... 33
Lecture 8: Applications of double integrals........................................................................................... 36
Density and mass............................................................................................................................... 36
Center of mass................................................................................................................................... 36
Density and mass............................................................................................................................... 36
Moments ........................................................................................................................................... 37
Center of mass................................................................................................................................... 37
Example 1 ...................................................................................................................................... 37
Example 2 ...................................................................................................................................... 39
Moment of inertia ............................................................................................................................. 39
Lecture 9: Triple integrals ...................................................................................................................... 40
Triple integrals ................................................................................................................................... 40
Triple integrals over rectangular boxes ............................................................................................. 40
Fubini’s theorem for triple integrals ................................................................................................. 41
Example 1 ...................................................................................................................................... 41
Triple integrals over general regions ................................................................................................. 41
Triple integrals over a region of type 1 ............................................................................................. 42
Triple integrals over a region of type 2 ............................................................................................. 42
Triple integrals over a region of type 3 ............................................................................................. 42
Example 2 ...................................................................................................................................... 42
Triple integrals ................................................................................................................................... 43
Example 3 ...................................................................................................................................... 43
Applications of triple integrals .......................................................................................................... 44
Center of mass................................................................................................................................... 44
Example ......................................................................................................................................... 44
Moment of inertia ............................................................................................................................. 45
Example ......................................................................................................................................... 45
Lecture 10: Triple integrals in cylindrical coordinates .......................................................................... 46
Cylindrical coordinates ...................................................................................................................... 46
Volume element in cylindrical coordinates ....................................................................................... 46
, Triple integrals in cylindrical coordinates.......................................................................................... 46
Example ......................................................................................................................................... 47
Applied project: Roller derby ............................................................................................................ 48
Lecture 11: Triple integrals in spherical coordinates ............................................................................ 49
Spherical coordinates ........................................................................................................................ 49
Volume element in spherical coordinates......................................................................................... 49
Triple integrals in spherical coordinates ........................................................................................... 49
Example ......................................................................................................................................... 50
Applied project: Roller derby ............................................................................................................ 52
Lecture 12: Change of variables in multiple integrals ........................................................................... 53
Change of variables ........................................................................................................................... 53
One-to-one transformations ............................................................................................................. 53
Example ......................................................................................................................................... 54
The Jacobian of a transformation...................................................................................................... 55
Change of variables in a double integrals ......................................................................................... 55
Example ......................................................................................................................................... 56
Polar coordinates .............................................................................................................................. 56
Triple integrals ................................................................................................................................... 57
Cylindrical coordinates ...................................................................................................................... 57
Spherical coordinates ........................................................................................................................ 58
Lecture 13: Vector fields ....................................................................................................................... 59
Example ......................................................................................................................................... 59
More examples .................................................................................................................................. 60
Examples............................................................................................................................................ 60
Gradient (vector) fields ..................................................................................................................... 60
Example ......................................................................................................................................... 61
Conservative vector fields ................................................................................................................. 61
Lecture 14: Line integrals and the arc length of a curve ....................................................................... 63
Parametrization of a curve ................................................................................................................ 63
Example ......................................................................................................................................... 64
The arc length of a curve ................................................................................................................... 64
Examples........................................................................................................................................ 64
The arc length function ..................................................................................................................... 64
The line integral of a scalar function ................................................................................................. 65
Example ......................................................................................................................................... 65
Application: physical interpretation .................................................................................................. 65
, Example ......................................................................................................................................... 66
The line integral of a vector field ...................................................................................................... 67
Example ......................................................................................................................................... 67
Notation............................................................................................................................................. 68
Lecture 15: The fundamental theorem for line integrals ...................................................................... 69
Line integrals ..................................................................................................................................... 69
The fundamental theorem for line integrals ..................................................................................... 70
Independence of path ....................................................................................................................... 70
Closed path ........................................................................................................................................ 70
Open and connected regions in ℝ2 .................................................................................................. 70
Conservative vector fields ................................................................................................................. 71
Simple curves..................................................................................................................................... 71
Simply-connected regions ................................................................................................................. 71
Conservative vector fields ................................................................................................................. 71
Lecture 16: Green’s theorem ................................................................................................................ 72
Example ......................................................................................................................................... 72
The orientation of a plane curve ....................................................................................................... 72
Green’s theorem ............................................................................................................................... 73
Example ......................................................................................................................................... 73
Application: calculating areas............................................................................................................ 74
Example ......................................................................................................................................... 74
Extended proof of Green’s theorem ................................................................................................. 75
Example ......................................................................................................................................... 75
Example ......................................................................................................................................... 76
Lecture 17: Curl and divergence............................................................................................................ 77
The curl of a vector field.................................................................................................................... 77
The vector differential operator ∇ .................................................................................................... 77
Example ......................................................................................................................................... 77
The curl of a conservative vector field .............................................................................................. 78
Example ......................................................................................................................................... 78
Example ......................................................................................................................................... 78
The divergence of a vector field ........................................................................................................ 79
Example ......................................................................................................................................... 80
Example ......................................................................................................................................... 80
The Laplace operator......................................................................................................................... 80
Vector forms of Green’s theorem ..................................................................................................... 81
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper woodytess. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €6,46. Je zit daarna nergens aan vast.