100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary enzymology for food and biorefinery (FCH-31306) €5,49
In winkelwagen

Samenvatting

Summary enzymology for food and biorefinery (FCH-31306)

1 beoordeling
 159 keer bekeken  13 keer verkocht

Summary of all the lectures of the course: Enzymology for food and biorefinery (FCH 31306). It includes carbohydrate degrading enzymes, protein degrading enzymes, enzyme kinetics & bioreactors and lipid degrading enzymes.

Voorbeeld 4 van de 31  pagina's

  • 4 mei 2020
  • 31
  • 2019/2020
  • Samenvatting
Alle documenten voor dit vak (1)

1  beoordeling

review-writer-avatar

Door: omurince • 3 jaar geleden

avatar-seller
fissatessa
Enzymology for food and biorefinery
Introduction
What are enzymes & protein structure
 Primary: amino acid sequence, glycosylation, peptide bonds
 Secondary: alpha-helices and beta-sheets
 Tertiary: 3D structure (folding), stabilised by
o Non-covalent interactions (H-bridges, electrostatic interactions, van der Waals
forces, hydrophobic interactions)
o Covalent interaction: S-S bridges
 Quaternary: formation of subunits
Disulphide bridges (S-S): stabilize all protein conformations

General classification & EC numbering
Each enzyme:
- systematic name (substrate, enzyme class)
- trivial name (papain; amylase)
- enzyme commission number (EC) + 4 digits
(1) enzyme class, (2-4): type of reaction and specificity of the reaction
Carbohydrates: CAZy classification, not EC

First digit: enzyme class
1. Oxidoreductases oxidation-reduction
2. Transferases remove & transfer of functional groups
3. Hydrolases cleave of bonds with introduction of water
4. Lyases cleave of bonds (no water), creation double bond
5. Isomerase rearrangements
6. Ligase formation of a linkage, with the use of ATP, UTP or CTP

Substrate or reaction specificity
Specificity: arises from the 3D structure of the enzyme active site (tertiary structure)
- Substrate specificity: enzyme is specific for a structural characteristic of the substrate
- Reaction specificity: only one type of reaction takes place for a certain enzyme

Michaelis-Menten parameters describe a typical enzyme reaction, curve: substrate vs. velocity
Km: a measure for the affinity of the enzyme for its substrate (substrate binding); substrate
concentration at which Vmax/2, lower Km: reaction faster with low [substrate], high affinity!
Vmax: maximal reaction rate (substrate conversion), saturation
kcat: amount of product formed per enzyme molecule, when all the enzyme has bound to the
substrate

,Higher [substrate], more product formed with same enzyme concentration, when all enzymes are
full, increasing [substrate] will slow down the reaction rate, Slope: reaction rate or velocity (V)

Endogenous/exogeneous enzymes, endo/exo-activity
Endogeneous: already present in food - Quality control (ripening, fruit, meat, cheese), product
formation (dough, beer)
Exogeneous: added enzymes - Production (cheese), quality (fruit juices)
Endo-activity: enzyme cleave internal bonds
Exo-activity: enzyme cleave at the outside of the chain

Effect of pH or T for enzymes
Effect of pH
- Activation through protonation: activity determined by the degree of protonation of
residues in active site
- Irreversible inactivation (loss of active conformation)

Effect of temperature
- Increase of temperature: reaction rate increases until optimum temperature
- Above the inactivation temperature: denaturation. Mainly the 2nd and 3rd
(and if present also the 4th) structure lost (loss of interaction), 1 st maintained
Temperature optimum a result of enzyme catalysis and enzyme inactivation

Q10 value: factor that gives the increase of reaction rate at a temperature increase of 10 degrees
D value: time needed to heat an enzyme at a certain temperature in order to maintain 10% of its
original activity; rate of inactivation at a certain temperature
Lower D: less time needed to inactivate the enzyme
Z value: increase of temperature needed to decrease the D-value from 100% to 10%
thermostability of an enzyme at increasing temperature
Higher Z: higher temperature needed to inactivate the enzyme

Other parameters affecting temperature stability: ion-strength, water activity, stabilisers (e.g.
immobilization, other proteins, Ca2+)
Enzyme inhibition: competitive inhibition, non-competitive inhibition, substrate inhibition

,Carbohydrate degrading enzymes
Classification of carbohydrate active enzymes & glycoside
hydrolases
Classification of CHO active enzymes
CAZy: carbohydrate active-enzyme database, based on:
- Homology based on amino-acid sequences & secondary structure motives (helix, strand,
turn)
- Classification has a highly predictive value (catalytic amino acids, homology modelling)


CAZy database: families of structurally-related catalytic and carbohydrate-binding modules (or
functional domains) of enzymes that degrade, modify or create glycosidic bonds
Enzyme classes
- Glycoside Hydrolases (GH) hydrolysis of glycosidic bonds (amylase, alpha-galactosidase)
- Glycosyl Transferases (GT) formation of glycosidic bonds (use activated sugar
phosphates as glycosyl donors, and catalyze glycosylgroup transfer to a nucleophilic group)
- Polysaccharide Lyases (PL) non-hydrolytic cleavage of glycosidic bonds (pectin lyase)
- Carbohydrate esterases (CE) hydrolysis of carbohydrate esters (pectin methyl esterase)
- Auxiliary activities (AA) redox enzymes that act in conjunction with CAZymes (LPMO)
CBM: carbohydrate binding module


Use of CAZy classification: optimized enzyme mixtures (enzyme selection increasingly important),
improvement of enzymes within reach – predictive value enables a better understanding of
structure-function relationship; attribute functions to unknown genes in unknown genomes by
alignment to families
Question: What is the difference with the EC classification? EC system is based on substrate
specificity and occasionally on the molecular mechanism, in CAZy enzymes the grouping in one
family reflects similar structural features of the enzymes, which helps to gain mechanistic
information of the enzyme (structure-function relationship).
Question: Are enzymes in one family (in CAZy) always having the same substrate/linkage specificity?
No, in one family the specificity may differ, or different families may cleave the same bonds

Glycoside hydrolases
Catalytic mechanisms of GH
 Inverting GH one-step mechanism, inverting stereochemistry (alpha-beta; beta-alpha)
Single displacement reaction, large active site (6.6-9.5 A), H 2O and substrate can enter
 Retaining GH two-step mechanism, retention of stereochemistry (alpha-alpha, beta-beta)
Smaller active site (5.5A), first substrate binds, H 2O acts as an acceptor in the second step
 Retaining GH & Transferase activity with a high substrate concentration, the substrate
can act as an acceptor, resulting in transglycosylation
Recap: monomeric CHO equilibrium linear/ring form, alpha: opposite face to the CH2OH- group at
C4 position, beta: same face

, What is endo/ exo-activity and processivity
Endo-activity: enzyme cleave internal bonds
Exo-activity: enzyme cleave at the outside of the chain
Processivity: the enzyme’s ability to repetitively continue its catalytic function without releasing the
substrate - Consequence for product profile

Analytical methods of enzyme activity
Hydrolysis - reducing end group analysis
During hydrolysis, more and more reducing end groups become
available, CHO or sugar residue ring that can open is called the
reducing end, polysaccharides: only one reducing ends



DE glucose: 100, maltose: 50, starch ~0, expectation: higher DE with
an exo-active enzyme, since it leads to mono and di-saccharides instead of oligomers; DE as a
characteristic of the enzyme: analyse Reducing Ends and Total Sugar, calculate DE in time
Reaction: copper, hydroxide (blue) reacts with reducing ends to copperoxide and water (red)
Spectrophotometric assay: quantify the amount or number of reducing end groups, calibration curve


Hydrolysis – HPSEC high performance size exclusion chromatography
Separation on the hydronamic volume in solution, RI/UV detector
Application: shift in molecular weight distribution
Big molecules cannot enter the pores in between the particles: shorter retention time

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper fissatessa. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €5,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 52510 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€5,49  13x  verkocht
  • (1)
In winkelwagen
Toegevoegd