100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Marketing Research Methods - Lectures Summary €7,27
In winkelwagen

Samenvatting

Marketing Research Methods - Lectures Summary

2 beoordelingen
 66 keer bekeken  2 keer verkocht

This is the summary of all regular Marketing Research Methods lectures of the academic year 2019/2020. Being a summary of the lectures, a large amount of screenshots from the lectures is added to provide additional visual clarity on some aspects and concepts.

Voorbeeld 4 van de 43  pagina's

  • Nee
  • Some parts of certain chapters.
  • 5 juli 2020
  • 43
  • 2019/2020
  • Samenvatting
book image

Titel boek:

Auteur(s):

  • Uitgave:
  • ISBN:
  • Druk:
Alle documenten voor dit vak (6)

2  beoordelingen

review-writer-avatar

Door: ApolloCreed34 • 2 jaar geleden

review-writer-avatar

Door: jeroenvdvalk96 • 3 jaar geleden

avatar-seller
adriaanvschaik
Marketing Research Methods – Lectures Summary


Lecture 1: Introduction, Factor Analysis
• This course is about questions & answers, NOT methods.
• Data analysis = means to an end. More important is telling the story, and being able to
interpret the outcome. Your ‘‘grandma’’ should be able to understand it; this gives you
points.

• Different scales for surveys:
o One-item; yes/no, age, gender, etc.
o Multi-item; attitudes, lifestyles, etc. Be careful not to include too many items.
• What if you have too many items?
o Factor Analysis: defining all questions of the survey in factors (price, service,
location, etc.)
o Reliability Analysis
▪ Both for data reduction, especially useful for multi-item scales.
• Data analysis basic steps:
o Inspection & preparing data for final analysis.
o Final analysis: testing hypotheses, regression, etc.
▪ Is there crap in your data initially? Then crap will come out. Crap in =
crap out.

• Factor Analysis: reduction of large quantity of data by finding common variance.
o To retrieve underlying dimensions in a dataset.
o To test if hypothesized dimensions actually exist in a dataset.
▪ No distinction will be made here at first between dependent and
independent variables = no causal relation in the first stage.
o Data reduction; n items -> summarize items in p < n factors, to achieve
parsimony: explaining a lot with little; the amount of information is the same
only with less variables. Also, there will be less multicollinearity after factor
analysis.
▪ Variables will be expressed as a linear combination of other variables,
called factors; x1 -> F1. Only choose the strongest factors. But; the
fewer factors you obtain, the less information.
▪ F1 -> x1, x2, x3. F2 -> x4, x5, x6, and so forth.

▪ Matrix form:
▪ F1 = w11x1 + w12x2 + …
▪ F2 = w21x1 + w22x2 + …

▪ Items = variables = survey questions.
▪ Dimensions = factors = components.




1

,o Factor Analysis in SPSS:
▪ 1) Research purpose: what variables to include?
• Easier if you have a certain hypothesis.
▪ 2) Is Factor Analysis appropriate?
• KMO (Kaiser-Meyer-Olkin) test; will data factor well?
If KMO < 0.5, drop variable with the lowest KMO.
• Bartlett’s test; H0; variables are uncorrelated. If we cannot
reject H0, no correlations can be established.
• Communalities; percentage of variance of a given variable
explained by all extracted factors. Should be < 1, but larger than
0.4.
▪ 3) Select factor model to achieve weights wij:
• Principal component analysis (PCA).
• Common factor analysis (not being done in this course).
▪ 4) Select best number of factors; check the output.
• Ignore factors which have less significance (less variance),
based on one or more of the following methods:
o Choose those which have eigenvalues of > 1.
o Look at total explained variance to be > 60%
(cumulative).
o Look at factors that explain > 5% each (non-
cumulative).
o Inspect scree plot, which is a graphical representation;
where is the drop in the line? Include variables before
this drop.
▪ In any case, better include too many variables
than too few variables.
▪ 5) Rotate factor matrix in SPSS.




2

,Lecture 2: Factor Analysis, Reliability Analysis, Cluster Analysis
• Step 5 of Factor Analysis: Rotate factor matrix in SPSS.
o ‘‘Cleaning the window’’; prevents that all variables load in 1 factor; minimizes
number of variables with high loadings, but does not change explained
variance.
▪ High loading = strong connection to one dimension (not more than one
dimension, otherwise this might be an indication that your factors are
not good.
• 6) Interpreting & labelling factors that have rotated loadings of > 0.5.
o Eigenvalue = how much variance is explained by a factor?
o Communality = how much variance is explained of a variable? More factors =
more communality.
▪ F1 F2
▪ X1 X1 Communality
▪ X2 X2
▪ X3 X3


Eigenvalue
o Cross-loading = variables having high loadings to more than one factor;
reduce the number of factors or variables.
• 7) Subsequent use of factors: create new variables, use obtained factors for this.
o 2 ways:
▪ Calculate factor scores for each respondent.
▪ Use reliability analysis.

• Reliability Analysis: when underlying dimensions are known, after using factor
analysis; how strong are these factors?
o Cronbach’s Alpha: measure internal consistency.
• 2 ways of reliability analysis:
o Reliability analysis of scale as found in theory.
o Reliability analysis of factors found in PCA.
• Measurement error = systematic error + random error.
o Reduce the systematic error. An analysis can still be reliable if there is a
consistent systematic error! There is only a problem if it is inconsistent.
• For step 7 of Factor Analysis, use Cronbach’s Alpha.
o CA should be higher than 0.6.
▪ Too low; delete the item.
▪ SPSS will show what CA will look like if one item is deleted.
• If it will appear low, keep the item, if higher, delete it.
• Only 2 items left? Don’t do Cronbach’s Alpha.




3

, • Data analysis with a spatial map:
o 1) Let many consumers rate n brands on m attributes.
o 2) Reduce m variables to a lower number of dimensions, preferably 2 (using
FA).
o 3) Check internal consistency with Cronbach’s Alpha.
o 4) Compute average scores on dimension or factor per brand.
o 5) Plot (in Excel).


• Cluster Analysis (STP):
o Segmenting:
▪ Identify segmentation bases.
▪ Develop profiles of resulting segments.
• 1) Rationale for segmentation (strategy): why?
• 2) Select most useful segmentation variables.
• 3) Segment market; select cluster analysis procedure.
o Divide heterogeneous sample in homogeneous groups.
Groups should internally be as similar as possible,
compared to other groups, which should among each
other be as different as possible!
o Active variables = used for clustering.
o Passive variables = used for group identification.
• 4) Group customers in segments.
• 5) Choose segments that best serve firm’s strategy, given
capabilities, skills, competitors.
o Targeting:
▪ Evaluate attractiveness of each segment.
▪ Select target segments.
o Positioning:
▪ Identify positioning concepts.
▪ Select, develop.

o Define measures for similarities of customers, based on their needs.
o Group customers with similar characteristics.
o Select number of segments using numeric & strategic criteria.
o Profile needs of segments.
o Measure -> Group -> Selection of number of segments -> Profile.

o At what moment in time do you start to combine people who are not that
similar anymore?
▪ Use the Agglomeration Schedule. Coefficient = cost of combining.
▪ Use a Dendogram; visual representation.




4

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper adriaanvschaik. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €7,27. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 52510 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€7,27  2x  verkocht
  • (2)
In winkelwagen
Toegevoegd