100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting van Andy Field - Discovering Statistics using IBM SPSS. €6,99   In winkelwagen

Samenvatting

Samenvatting van Andy Field - Discovering Statistics using IBM SPSS.

 75 keer bekeken  3 keer verkocht

Samenvatting van Andy Field - Discovering Statistics using IBM SPSS voor het vak Intermediate Statistics II. Hoofdstuk 7 (solutions), 10 (moderation & mediation), 11 (comparing several means), 12 (ANOVA part I, 13 (ANOVA part I), 14 (repeated measures design), 15 (mixed design ANOVA) & 19 (logistic...

[Meer zien]

Voorbeeld 4 van de 69  pagina's

  • Nee
  • Hoofdstuk 7, 10, 11, 12, 13, 14, 15, 19
  • 4 oktober 2020
  • 69
  • 2019/2020
  • Samenvatting
book image

Titel boek:

Auteur(s):

  • Uitgave:
  • ISBN:
  • Druk:
Alle documenten voor dit vak (3)
avatar-seller
weijenborgl
Week 1 -- Preparation
Field p.419-426
7.4 Bivariate correlation
7.4.4. Kendall's tau (non-parametric)
Kendall’s tau, T, is a non-parametric correlation and it should be used rather than Spearman’s
coefficient when you have a small data set with a large number of tied ranks (= if you rank all the
scores and many scores have the same rank).
To carry this out, follow the same steps as for Pearson and Spearman correlations but select
[Kendall’s tau-b].
Kendall’s value is a more accurate gauge of what the correlation in the population would be
(compared to Spearman).

7.4.5 Biserial and point-biserial correlations
These correlation coefficients are used when one of the two variables is dichotomous (i.e., it is
categorical with only two categories. E.g. being pregnant). The difference between the use of biserial
and point-biserial correlations depends on whether the dichotomous variable is discrete or continuous.
A discrete, or true, dichotomy is one for which there is no underlying continuum between the
categories (example = being dead).
It is possible to have a dichotomy for which a continuum does exist. An example is passing or failing
a test: some people will only just fail, while others will fail by a large margin. So although
participants fall into only two categories, there is an underlying continuum along which they lie.

The point-biserial correlation coefficient (rpb) is used when one variable is a discrete dichotomy,
whereas the biserial correlation coefficient (rb) is used when one variable is a continuous
dichotomy. The biserial coefficient cannot be calculated directly in SPSS; first you must calculate the
point-biserial correlation coefficient and then use an equation to adjust it.

A point-biserial correlation coefficient is simply a Pearson correlation when the dichotomous variable
is coded with 0 for one category and 1 for the other. The significance test for this correlation is
actually the same as performing an independent-samples t-test on the data. The sign of the coefficient
is completely dependent on which category you assign to which code and so we must ignore all
information about the direction of the relationship.
We can still interpret R^2. If R^2 = .378 = .143, we can conclude that gender accounts for 14.3% of
the variability in time spent away from home.

SUMMARY on correlations
● We can measure the relationship between two variables using correlation coefficients.
● These coefficients lie between -1 and +1.
● Pearson’s correlation coefficient, r, is a parametric statistic and requires interval data for both
variables. To test its significance we assume normality too.
● Spearman’s correlation coefficient, rs, is a non-parametric statistic and requires only ordinal
data for both variables.
● Kendall’s correlation coefficient, T, is like Spearman’s rs, but probably better for small
samples.
● The point-biserial correlation coefficient, rpb, quantifies the relationship between a continuous
variable and a variable that is a discrete dichotomy (e.g., there is no continuum underlying the
two categories).

, ● The biserial correlation coefficient, rb, quantifies the relationship between a continuous
variable and a variable that is a continuous dichotomy (e.g., there is a continuum underlying
the two categories, such as passing or failing an exam).

7.5 The partial correlation
7.5.1 The theory behind part and partial correlation
A correlation between two variables in which the effects of other variables are held constant is known
as a partial correlation.




We use partial correlations to find out the size of the unique portion of variance. Therefore, we could
conduct a partial correlation between exam anxiety and exam performance while ‘controlling’ for the
effect of revision time. Likewise, we could carry out a partial correlation between revision time and
exam performance while ‘controlling’ for the effects of exam anxiety.

Video lectures
Week 1.1 Introduction to the course
This video:
I. Introduction of the course.
II. Course outline.
A. Week 1 → Revision and categorical predictors.
B. Week 2 → Moderation.
C. Week 3 → Mediation.
D. Week 4 → ANOVA part 1: One-way ANOVA, ANCOVA, Fact, ANOVA.

, E. Week 5 → ANOVA part 2: RM ANOVA, MD ANOVA.
F. Week 6 → Logistic regression.

Week 1.2 Revision: linear regression
This video
● Intuition simple and multiple regression.
● Calculate test statistics regression.
● Interpret regression output.

Linear regression
= We are trying to model the relationship between a dependent variable (y) and multiple independent
variable(s) (x). Predicting y using x. How much y increases/decreases as a function of x.




General linear regression model =
Some part we can never predict is the random error.

b’s
We can calculate b0 and b1 for simple linear regression
- But often we let SPSS do the work for us, especially with multiple regression.

SPSS: Analyze → Regression → Linear. Pick dependent (exam score) and independent variables
(fear of stats). Click Go.
Constant B = b0.
Fear of stats B = b1.

Model fit
Suppose we have the coefficients:
→ How do we assess model fit? Are we making a poor or a good prediction?

Estimate ε
- If we estimate ε, we get a sense of how well our model can predict the DV from the IV.
- We can compare the amount of error of our model (SSR) to the error of a model with no
relationship between x and y (SST).
- We look at the differences between the regression line and the actual observations and add
these up.
- Low error ⇒ the model is good.

SST visualized (sum of squared total)

, Doesn’t take any information into account that you have on predicting exam scores.

SSR visualized (sum of squared residual)




Where Yhead is the predicted value we got from our regression model.

SSM visualized (sum of squared model)




In other words




Formulas

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper weijenborgl. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 64438 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,99  3x  verkocht
  • (0)
  Kopen