100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting statistiek 2 €3,49
In winkelwagen

Samenvatting

Samenvatting statistiek 2

2 beoordelingen
 575 keer bekeken  12 keer verkocht

Samenvatting Statistiek 2 voor Bedrijfseconomie. Gert Nieuwenhuis: Statistical Methods for Business and Economics

Voorbeeld 2 van de 23  pagina's

  • Ja
  • 6 juli 2014
  • 23
  • 2013/2014
  • Samenvatting
book image

Titel boek:

Auteur(s):

  • Uitgave:
  • ISBN:
  • Druk:
Alle documenten voor dit vak (2)

2  beoordelingen

review-writer-avatar

Door: sarweekeithnyankun • 4 jaar geleden

review-writer-avatar

Door: Anoukk1994 • 8 jaar geleden

avatar-seller
ROOD123
Summary Statistics 2
Chapters 16 – 19 (MIDTERM)




PART 4: INFERENTIAL STATISTICS
Studies in economics are often about large populations and unknown population statistics (parameters) concerning one or more
variables. Observing the whole population is not an option. Inferential statistics draws conclusions about the whole population
by studying samples drawn from that population.




Chapter 16: Confidence intervals and tests for µ and p
-The purpose of this chapter is to develop standard interval estimators and standard test procedures for population means µ (if
variable x is quantitative) and population proportion p (if variable x is qualitative). They are combined since for large sample
sized the statistical procedures for both parameters lean on the Central Limit Theorem, and the formats for their interval
estimators and tests statistics are similar.
-When the inference is about a population mean, then it will be assumed that the accompanying population variance ² is
unknown (in contradiction to chapter 15)!
-The procedures are based on the respective estimators ̅ and ̂
§16.1 - Standardized sample mean and t-distribution (= µ)
̅
-Standardized sample mean (in the case ² is known): Z= ˜ N(0,1) (standard deviation of ̅)

-The reasons why this standardized sample mean is so important:
1. If the sample is large, Z is approximately standard normally distributed (easy calculations)
2. If the sample is drawn from a normal distribution, Z is exactly standard normally distributed (easy calculations)
3. It is the starting point for the creation of interval estimators and test statistics for µ
-However, in this chapter we assumed that ² is unknown, which changes the standardized sample mean Z into a new random
̅
variable = adapted standardized version: T = ˜ Tn-1 (standard error of ̅)

= more variation (estimator); new probability distribution namely the t-distribution.
-The basic results for inferential statistics on µ; is if the random sample is drawn from N(µ, ²) you get Z or T. Note that they are
both ‘herleid’ from the normal distribution.
-Property of the family of t-distributions: Tv ≈ N(0,1) as v gets large whereby v = n -1 which is the number of degrees of
freedom (n-1 gives more precise measures than n). Note that S becomes closer to ² when n gets large. So for normal random
samples, the probability distribution of Z and T are approximately equal for large n.
-Graph (pdf) looks like standard normal graph (pdf) since it is also symmetric around 0 but the tails are fatter and is less high.
-Considering these graphs and pdf’s; alpha is now entering the scene: the number “tα;n-1” cuts off an area α in the right-hand
tail (and an area 1 - α in the left-hand tail)  P (T ≥ t α;n-1) = α (and P (T ≤ - t α;n-1) = α  symmetry)

EXCEL
-Z is always calculated with respect to the left-hand tail  Area is given(Δ): z0,03 ? = NORM. S. INV(0,97)
 Number is given(Δ): Z >2.1 ? =
1) 1 - NORM. S. VERD (2,1;1)
2) NORM. S. VERD (-2,1;1) since symmetry around 0
-T should only be adjusted with left-hand tail for given #  Area is given: t0,02;9 ? = TINV (0,04;9)
 Number is given(Δ): T > 2.1 ? =
1) 1- T. DIST (2,1;9;1)
2) T. DIST (-2,1;9;1) since symmetry around 0
-Note: do not get confused by P (T > “t α;n-1”) = α and the notation of an area by z0,03 or t0,02;9 (“t α;n-1” = just a # / quantile)

, -So P (-tα/2;n-1 < T < tα/2;n-1) = 1 – α follows as a result which leads to confidence intervals in the next section because
rewriting with test statistics leads to P(̅-tα/2;n-1 √ < µ < ̅ + tα/2;n-1 √ )=1-α
§16.2 Confidence intervals and tests for µ
-Doing inferential statistics of µ, at least one of the following situations is assumed to be valid:
1. The normal distribution N(µ, ²) is a good model for the variable X
2. The sample size n is large (Central Limit Theorem)  approximately standard normally distributed N(0,1).
 These resulting statistical procedures will turn out to be the same!
-Note: for inferential statistics about µ you use the t-distribution since ² is unknown.
• 1- α confidence intervals: the following two random bounds capture the unknown µ with probability 1 – α
Interval estimator for µ when ² is unknown: ̅ +/- tα/2;n-1 √
L = ̅ - tα/2;n-1 √ U = ̅ + tα/2;n-1 √
-Half width = Tα/2;n-1 √ =h
• Hypothesis tests: 5- step procedure for testing H0 against H1
(i) Testing problem with the hinge µ0 + and α (note: only H0 can obtain ≤/≥/=)
̅
(ii) Test statistic adopted for worst-case scenario (hinge): T=

(iii) Reject H0 when: a) t ≥ tα; n-1 =one-sided, upper tailed
b) t ≤ - tα; n-1 =one-sided, lower tailed
c) t ≤ - tα/2; n-1 or t ≥ tα/2; n-1 =two-sided
(note: use always ≤ and ≥ )
(iv) The val (realization of T)
(v) The conclusion
-Hypothesis testing can equivalently be conducted with the p-value method (the smallest significance level that would have
rejected H0), see the following (step 1 and 2 are the same);
(iii) The val (realization of T)
(iv) The p-value a) p – value = P(T ≥ val) =one-sided, upper tailed
b) p – value = P (T≤ val) =one-sided, lower tailed
c) p – value = P (l T l ≥ l val l )= 2 x P (T ≥ l val l ) =two-sided
(note: use always ≤ and ≥ )
(v) The conclusion; in comparison with α  reject H0 when p-value ≤ α in all circumstances (a, b and c).
-When nothing is said about ² you may assume that it is unknown.
-Variables that measure income or expenses are not normally distributed by their selves; need large n!
-You can have differences between the conclusion of a confidence interval and a hypothesis test.
-Create a (1- α) confidence interval with half-width ‘H’: = sample size n is unknown and needs to be calculated, while the H and
the rest is known (you need to know n to obtain Tα/2;n-1, but they assume it will be equal to Zα which ís known = large sample
size n + s can be used in the former example)  ‘H’ = Tα/2;n-1 √
= with widh .. + with a precision of .. + to within .. + estimation error is at most …
Note that you have not really to do anything with the confidence interval part; just calculate n! they talk about 1- α
confidence intervals since the half-width formula is obtained from the interval estimator + you know α then.
§16.3 – Confidence intervals and tests for p: large sample approach
-We only consider situation 2 in the case of the proportion p: “the sample size n is large (Central Limit Theorem) 
approximately standard normally distributed N(0,1)”. This means that the sample has to meet the requirements of the (adapted)
5-rule = np ≥ 5 and n(1-p) ≥ 5  for confidence intervals you use ̂ and for tests you use P0.
-The parameter of interest is the unknown proportion of successes (#1) in the population (failures = 0). Let Y be the number of
successes in the sample and ̂ the sample proportion of successes in the sample; ̂ = Y/n (=estimator p)
-Note: for inferential statistics about p you use a form of the z- distribution (because you don’t have any ²):
̂ ̂ ̂ ̂ ̂
Z= ≈ N(0,1) and P(̂ – zα/2 √ < p < ̂ + zα/2 √ ) ≈ 1- α which is useful for CI’s.


• 1- α confidence intervals: the following two random bounds capture the unknown p with ≈ probability 1 – α
̂ ̂
Interval estimator for p if the 5-rule is valid: ̂ +/– zα/2 √

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper ROOD123. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €3,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 61231 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€3,49  12x  verkocht
  • (2)
In winkelwagen
Toegevoegd