100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

YSS-20306 Lecture summary Quantitative

Beoordeling
4,0
(2)
Verkocht
13
Pagina's
30
Geüpload op
17-12-2018
Geschreven in
2018/2019

Dit is een samenvatting van alle colleges van het vak Quantitative and Qualitative Research Techniques in the Social Sciences (YSS-20306). Het bevat de slides van Quantitative, aangevuld met wat er in de colleges is verteld. Deze samenvatting is geheel in het Engels. Er staan alleen wat losse begrippen extra uitgelegd in het Nederlands, ter verduidelijking.

Meer zien Lees minder











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
The lectures are based on this book (references are made).
Geüpload op
17 december 2018
Aantal pagina's
30
Geschreven in
2018/2019
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

ÝSS-20306 Lecture summary
Quantitative


Lecture 1 – Simple Regression Analysis
29-10-2018

Dependence techniques
• 2 different sets of variables
o Outcome
o Predictors
• Example:
o Variable y → Record sales (a.k.a. dependent or criterion)
o Variables xj → attractiveness of band, advertising budget, and number of plays radio
(a.k.a. independent)
o The variable y can be predicted by the three predictors (xj)
• This is used to:
o Predict scores on y on the basis of scores on xj
o To investigate the effect of the xj’s on y

SINGLE PREDICTOR MULTIPLE PREDICTORS
INTERVAL-SCALE PREDICTOR 1. Simple regression 2. Multiple regression
NOMINAL-SCALE PREDICTOR 3. Oneway ANOVA 4. Factorial ANOVA


Interdependence techniques
• To investigate the correlation or association between a number of variables.
• No distinction between outcome and predictor

TWO VARIABLES MULTIPLE VARIABLES
INTERVAL-SCALE PREDICTOR 5. Correlation 6. Exploratory factor analysis
NOMINAL-SCALE PREDICTOR 7. Cross-tabulation 8. Loglinear analysis


Covariance
Statistical model: linear relation
Covariance measures the extent to which positive/negative deviations from the mean on one
variable (proportionally) go together with positive/negative deviations from the mean on the other
variable.
∑𝑖(𝑥𝑖 −𝑢
̅)(𝑦𝑖 −𝑦̅) Covariantie is een parameter die bij
• 𝑐𝑜𝑣(𝑥, 𝑦) = 𝑁−1
= 4.25
twee toevalsvariabelen aangeeft in
• Formula multiplies deviations from means welke mate de beide
• Xi and yi represent the scores on the variables toevalsvariabelen (lineair) met elkaar
• N represents the number of observations samenhangen. (Veronderstelt lineair
verband)
• Means are 5.4 and 11.0
• Terms in numerator are (5 – 5.4)(8 – 11.0) etc.
• To make sense, variables have to be measured on interval-scale
o If this is done, the ratios of the differences between values is meaningful and these
can be used.
• Disadvantage of covariances
o The value that you get, depends on units of the measurement scale (e.g., litres versus
millilitres)
o Not limited to a general, particular range (values can become enormous)


Outcome (y) = red, predictors (xj) = blue

,ÝSS-20306 Lecture summary
Quantitative

Pearson correlation
• Forms a solution to the problem mentioned above, because the values will always fall
between 0 and |1|
• Divides covariance by product of standard deviations → Pearson correlation
𝑐𝑜𝑣(𝑥,𝑦)
o 𝑟(𝑥, 𝑦) = 𝑠𝑥 𝑠𝑦
= 0.87
• Measures linear relationship, so … (at least) interval-scaled variables
o With ordinal data use Spearman’s rho, Kendall’s tau, biserial, point-biserial
• Does not depend on units of the measurement scale

Correlation
Measure of linear relationship


r = 1 assumes perfect linear relation

r = .999 → Positive relation, slope ≈ 1

r = -.999 → Negative relation, slope ≈ -1

r = .763 → Smaller correlation

r = .809 → Not linearly correlated

r = .354 → Increasing ‘mess’

r = .056 → Not even slightly correlated




Statistical inference Fisher Z-transformatie is
• Null hypothesis significance testing (NHST) (are two-tailed!!) een manier om de
o Test H0: r = rhyphotesized versus H1: r ≠ rhypothesized verdeling van Pearson te
1 1+𝑟 veranderen zodat deze
o Fisher z transformation: zr = 2 √𝑁 − 3 ln (1−𝑟) = 1.87
normaal verdeeld wordt.
o Test H0: r = 0 versus H1: r ≠ 0
𝑟 √𝑁−2
o 𝑡𝑟 = = 3.07 N – 2 are degrees of freedom
√1−𝑟 2
• Assumptions that need to be met
o Independent observations
o Variables normally distributed (to make sure that the p-value is correct)
o Assumptions necessary for applicability of theoretical distributions, i.e. validity of p-
value
o Sample obtained by simple random sampling (all have the same chance to enter the sample)
• Also possible to create (e.g. 95%) confidence intervals
o If we draw same-sized samples over and over again, 95% of the correlations will be in
this interval




Outcome (y) = red, predictors (xj) = blue

,ÝSS-20306 Lecture summary
Quantitative

Measure of relationship
Correlation
• Effect size r2

• Field (citing Cohen, 1988, 1992) Others (citing Cohen, 1988, 1992)
0.01 is small 0.01 is small
0.09 is medium 0.06 is medium
0.25 is large 0.14 is large

• Also called coefficient of determination (proportion of variance accounted for)

Dependence
Simple regression
• Goal and diagram
• Predict outcome variable (criterion/dependent) y from predictor variable x (independent)
• Investigate effect of x on y


Adverts Packets
watched bought



Simple regression Interesting
Model Typically uninteresting
• Regression equation Error/residual
yi = f(xi) = (b0 + b1x1) + εi
= model + error/residual
Regression weights/coefficients
B0 (intercept)
B1 (slope)
Estimated such that variance (εi) is as small as possible
(method of least squares) →

Estimates: b̂0 and b̂1
Predicted scores: ŷi = b̂0 + b̂1xi
𝑐𝑜𝑣(𝑥,𝑦)
• b̂1 will be 𝑣𝑎𝑟(𝑥)
o Best (smallest variance)
Linear
Unbiased (expectation is equal to true b1 in the population)
Estimator (BLUE)
o If (assumption) εi = independent, identically distributed N(0,σ)
• Based on measure of linear relationship, so … assumes, (at least) interval-scaled outcome
and predictor variables
• Assumption of normally distributed residuals also requires (at least) interval-scaled outcome
variables
• Overall statistics: r(y, ŷ) = R = (multiple) correlation coefficient
• R2 = coefficient of determination



Outcome (y) = red, predictors (xj) = blue

, ÝSS-20306 Lecture summary
Quantitative

Overall statistics & SPSS
Test H0: R = 0 versus H1: R ≠ 0




Detailed statistics




Extra: t-test by simple regression: dummy variable
T-test: test of the average in the first group differs from the average from the second group




Assumptions
• Homogene variances (variance in the first group is about as big as variance in the second group)
• The larger the sample, the smaller the significant coefficients will be (so, pay attention to scale)


Outcome (y) = red, predictors (xj) = blue

Beoordelingen van geverifieerde kopers

Alle 2 reviews worden weergegeven
3 jaar geleden

5 jaar geleden

4,0

2 beoordelingen

5
0
4
2
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
nicolest Wageningen University
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
72
Lid sinds
7 jaar
Aantal volgers
54
Documenten
25
Laatst verkocht
1 jaar geleden

3,5

12 beoordelingen

5
2
4
4
3
5
2
0
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen