100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
YSS-20306 Lecture summary Quantitative €4,49
In winkelwagen

Samenvatting

YSS-20306 Lecture summary Quantitative

2 beoordelingen
 304 keer bekeken  13 keer verkocht

Dit is een samenvatting van alle colleges van het vak Quantitative and Qualitative Research Techniques in the Social Sciences (YSS-20306). Het bevat de slides van Quantitative, aangevuld met wat er in de colleges is verteld. Deze samenvatting is geheel in het Engels. Er staan alleen wat losse begri...

[Meer zien]

Voorbeeld 4 van de 30  pagina's

  • Nee
  • The lectures are based on this book (references are made).
  • 17 december 2018
  • 30
  • 2018/2019
  • Samenvatting
book image

Titel boek:

Auteur(s):

  • Uitgave:
  • ISBN:
  • Druk:
Alle documenten voor dit vak (4)

2  beoordelingen

review-writer-avatar

Door: joppewijnberger • 2 jaar geleden

review-writer-avatar

Door: elbrichschuurmans • 4 jaar geleden

avatar-seller
nicolest
ÝSS-20306 Lecture summary
Quantitative


Lecture 1 – Simple Regression Analysis
29-10-2018

Dependence techniques
• 2 different sets of variables
o Outcome
o Predictors
• Example:
o Variable y → Record sales (a.k.a. dependent or criterion)
o Variables xj → attractiveness of band, advertising budget, and number of plays radio
(a.k.a. independent)
o The variable y can be predicted by the three predictors (xj)
• This is used to:
o Predict scores on y on the basis of scores on xj
o To investigate the effect of the xj’s on y

SINGLE PREDICTOR MULTIPLE PREDICTORS
INTERVAL-SCALE PREDICTOR 1. Simple regression 2. Multiple regression
NOMINAL-SCALE PREDICTOR 3. Oneway ANOVA 4. Factorial ANOVA


Interdependence techniques
• To investigate the correlation or association between a number of variables.
• No distinction between outcome and predictor

TWO VARIABLES MULTIPLE VARIABLES
INTERVAL-SCALE PREDICTOR 5. Correlation 6. Exploratory factor analysis
NOMINAL-SCALE PREDICTOR 7. Cross-tabulation 8. Loglinear analysis


Covariance
Statistical model: linear relation
Covariance measures the extent to which positive/negative deviations from the mean on one
variable (proportionally) go together with positive/negative deviations from the mean on the other
variable.
∑𝑖(𝑥𝑖 −𝑢
̅)(𝑦𝑖 −𝑦̅) Covariantie is een parameter die bij
• 𝑐𝑜𝑣(𝑥, 𝑦) = 𝑁−1
= 4.25
twee toevalsvariabelen aangeeft in
• Formula multiplies deviations from means welke mate de beide
• Xi and yi represent the scores on the variables toevalsvariabelen (lineair) met elkaar
• N represents the number of observations samenhangen. (Veronderstelt lineair
verband)
• Means are 5.4 and 11.0
• Terms in numerator are (5 – 5.4)(8 – 11.0) etc.
• To make sense, variables have to be measured on interval-scale
o If this is done, the ratios of the differences between values is meaningful and these
can be used.
• Disadvantage of covariances
o The value that you get, depends on units of the measurement scale (e.g., litres versus
millilitres)
o Not limited to a general, particular range (values can become enormous)


Outcome (y) = red, predictors (xj) = blue

,ÝSS-20306 Lecture summary
Quantitative

Pearson correlation
• Forms a solution to the problem mentioned above, because the values will always fall
between 0 and |1|
• Divides covariance by product of standard deviations → Pearson correlation
𝑐𝑜𝑣(𝑥,𝑦)
o 𝑟(𝑥, 𝑦) = 𝑠𝑥 𝑠𝑦
= 0.87
• Measures linear relationship, so … (at least) interval-scaled variables
o With ordinal data use Spearman’s rho, Kendall’s tau, biserial, point-biserial
• Does not depend on units of the measurement scale

Correlation
Measure of linear relationship


r = 1 assumes perfect linear relation

r = .999 → Positive relation, slope ≈ 1

r = -.999 → Negative relation, slope ≈ -1

r = .763 → Smaller correlation

r = .809 → Not linearly correlated

r = .354 → Increasing ‘mess’

r = .056 → Not even slightly correlated




Statistical inference Fisher Z-transformatie is
• Null hypothesis significance testing (NHST) (are two-tailed!!) een manier om de
o Test H0: r = rhyphotesized versus H1: r ≠ rhypothesized verdeling van Pearson te
1 1+𝑟 veranderen zodat deze
o Fisher z transformation: zr = 2 √𝑁 − 3 ln (1−𝑟) = 1.87
normaal verdeeld wordt.
o Test H0: r = 0 versus H1: r ≠ 0
𝑟 √𝑁−2
o 𝑡𝑟 = = 3.07 N – 2 are degrees of freedom
√1−𝑟 2
• Assumptions that need to be met
o Independent observations
o Variables normally distributed (to make sure that the p-value is correct)
o Assumptions necessary for applicability of theoretical distributions, i.e. validity of p-
value
o Sample obtained by simple random sampling (all have the same chance to enter the sample)
• Also possible to create (e.g. 95%) confidence intervals
o If we draw same-sized samples over and over again, 95% of the correlations will be in
this interval




Outcome (y) = red, predictors (xj) = blue

,ÝSS-20306 Lecture summary
Quantitative

Measure of relationship
Correlation
• Effect size r2

• Field (citing Cohen, 1988, 1992) Others (citing Cohen, 1988, 1992)
0.01 is small 0.01 is small
0.09 is medium 0.06 is medium
0.25 is large 0.14 is large

• Also called coefficient of determination (proportion of variance accounted for)

Dependence
Simple regression
• Goal and diagram
• Predict outcome variable (criterion/dependent) y from predictor variable x (independent)
• Investigate effect of x on y


Adverts Packets
watched bought



Simple regression Interesting
Model Typically uninteresting
• Regression equation Error/residual
yi = f(xi) = (b0 + b1x1) + εi
= model + error/residual
Regression weights/coefficients
B0 (intercept)
B1 (slope)
Estimated such that variance (εi) is as small as possible
(method of least squares) →

Estimates: b̂0 and b̂1
Predicted scores: ŷi = b̂0 + b̂1xi
𝑐𝑜𝑣(𝑥,𝑦)
• b̂1 will be 𝑣𝑎𝑟(𝑥)
o Best (smallest variance)
Linear
Unbiased (expectation is equal to true b1 in the population)
Estimator (BLUE)
o If (assumption) εi = independent, identically distributed N(0,σ)
• Based on measure of linear relationship, so … assumes, (at least) interval-scaled outcome
and predictor variables
• Assumption of normally distributed residuals also requires (at least) interval-scaled outcome
variables
• Overall statistics: r(y, ŷ) = R = (multiple) correlation coefficient
• R2 = coefficient of determination



Outcome (y) = red, predictors (xj) = blue

, ÝSS-20306 Lecture summary
Quantitative

Overall statistics & SPSS
Test H0: R = 0 versus H1: R ≠ 0




Detailed statistics




Extra: t-test by simple regression: dummy variable
T-test: test of the average in the first group differs from the average from the second group




Assumptions
• Homogene variances (variance in the first group is about as big as variance in the second group)
• The larger the sample, the smaller the significant coefficients will be (so, pay attention to scale)


Outcome (y) = red, predictors (xj) = blue

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper nicolest. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €4,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 52510 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€4,49  13x  verkocht
  • (2)
In winkelwagen
Toegevoegd