,Table of Contents
1 Intended Learning Outcomes ................................................................................................. 2
2 Introduction ................................................................................................................................. 2
2.1 Exercise ................................................................................................................................ 3
3 Matrix ............................................................................................................................................. 3
4 Addition and Subtraction of Matrices ................................................................................... 4
5 Multiplication of Matrices ......................................................................................................... 4
5.1 Exercise ................................................................................................................................ 5
5.2 Exercise ................................................................................................................................ 5
6 Determinant of a 2x2 matrix .................................................................................................... 7
6.1 Exercise ................................................................................................................................ 7
6.2 Exercise ................................................................................................................................ 7
6.3 Exercise ................................................................................................................................ 8
7 Minor and cofactor of a matrix ............................................................................................... 8
7.1 Remark:................................................................................................................................. 9
7.2 Remark:............................................................................................................................... 10
8 Determinant of a 3x3 matrix by cofactor expansion ....................................................... 10
8.1 Example .............................................................................................................................. 10
8.1.1 Remark:....................................................................................................................... 11
8.2 Exercise .............................................................................................................................. 12
8.3 Exercise .............................................................................................................................. 12
9 Cramer’s rule ............................................................................................................................. 13
9.1 Solving 2 equations with 2 unknowns using Cramer’s rule ................................. 14
9.1.1 Example ...................................................................................................................... 14
9.2 Solving 3 equations with 3 unknowns using Cramer’s rule ................................. 15
9.2.1 Example ...................................................................................................................... 15
10 Tutorial Questions ............................................................................................................... 16
11 Conclusion and References .............................................................................................. 16
1
, 1 Intended Learning Outcomes
By the end of this handbook, students should be able to
Evaluate the determinant of a 2x2 matrix
Evaluate the inverse of a 2x2 matrix
Evaluate the determinant of a 3x3 matrix using cofactor expansion along the
first, second and third row
Use Cramer’s rule to solve a system of linear equations with 2 equations and
2 unknowns
Use Cramer’s rule to solve a system of linear equations with 3 equations and
3 unknowns
2 Introduction
When two or more equations have the same variables and solutions, we say they are
simultaneous equations. For example, the following are all simultaneous equations:
x y 3
a)
x 2y 5
x y 5
b)
x y2 4
2
2 x 3 y 2
c)
x 2 2 xy 12
2x 3y 7
d)
6x y 1
5 x 6 y 3z 6
e) 4 x 7 y 2 z 3
3x y 7 z 1
A linear equation does not involve any product or powers of variables. For this reason,
(b), (c), and (d) are not linear simultaneous equations. For Maths 1, we are only
interested in systems of linear equations.
2
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through EFT, credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying this summary from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller banelemakhanya. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy this summary for R145,00. You're not tied to anything after your purchase.