100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
What Is Applied Mathematics R133,00
Add to cart

Class notes

What Is Applied Mathematics

 4 views  0 purchase

What Is Applied Mathematics. Applied mathematics is a broad subject area dealing with those problems that come from the real world. Applied mathematics deals with all the stages for solving these problems, namely:

Preview 4 out of 76  pages

  • October 4, 2021
  • 76
  • 2021/2022
  • Class notes
  • Jordi-lluis figueras
  • All classes
All documents for this subject (2)
avatar-seller
philemonmaloka
Applied Mathematics.

Jordi-Lluı́s Figueras

October 9, 2014

,ii

,Contents

Some words v

1 What is Applied Mathematics. 1


I Mathematical modelling 3
2 Dimensional analysis and Scaling. 7
2.1 Dimensions and units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Laws and unit free laws. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Pi theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Example 1: Atomic bomb. . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Example 2: Heat transfer problem. . . . . . . . . . . . . . . . . . . . 13
2.4 Scaling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13


II Analytical methods. 15
3 Perturbation methods. 17
3.1 Regular perturbations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.1 Poincaré-Lindstedt method. . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Big O and little o notation. . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Singular perturbations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Boundary layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 The WKB approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Calculus of variations. 27
4.1 Variational problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Necessary conditions for extrema. . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.1 Normed linear spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2 Derivatives of functionals. . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 The simplest problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Generalizations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.1 Higher derivatives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

iii

, iv CONTENTS

4.4.2 Several functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4.3 Natural boundary conditions. . . . . . . . . . . . . . . . . . . . . . . 33
4.5 More problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Dynamical systems. 35
5.1 Discrete dynamical systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1.1 Equilibria and stability. . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Continuous dynamical systems. . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.1 Vector fields and phase space portraits. . . . . . . . . . . . . . . . . . 38
5.2.2 Stationary orbits and stability. . . . . . . . . . . . . . . . . . . . . . . 39
5.2.3 Periodic orbits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Chaotic systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Introduction to partial differential equations. 43
6.1 Some examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3 Linearity and superposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.4 Laplace’s equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.5 Evolution problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.6 Eigenfunction expansions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 Sturm-Liouville problems. 51

8 Theory of transforms. 53
8.1 Laplace transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.2 Fourier transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.3 Other transforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

9 Integral equations. 59
9.1 Volterra equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.2 Fredholm equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.2.1 Fredholm equations with degenerate kernel. . . . . . . . . . . . . . . 62
9.2.2 Symmetric kernels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
9.3 Perturbation methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Appendices 67

A Solving some ODEs. 69
A.1 First order linear ODEs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.2 Second order linear ODEs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through EFT, credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller philemonmaloka. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for R133,00. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

51036 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 15 years now

Start selling
R133,00
  • (0)
Add to cart
Added