100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Summary Mathematics 144 Summaries R158,00
Add to cart

Summary

Summary Mathematics 144 Summaries

1 review
 451 views  13 purchases

A neatly digitally summarised document covering all the work done in semester 2: weeks 1 -12, including linear algebra and calculus. (Ends with 10.5 Conic Sections) - all work needed for the A2 and A1 exams.

Last document update: 2 year ago

Preview 4 out of 80  pages

  • No
  • All the content covered in semester 2, from weeks 1 to 12.
  • September 12, 2022
  • October 23, 2022
  • 80
  • 2022/2023
  • Summary
book image

Book Title:

Author(s):

  • Edition:
  • ISBN:
  • Edition:
All documents for this subject (7)

1  review

review-writer-avatar

By: jessicafarley • 3 months ago

avatar-seller
miaolivier16
Week 1 : Revision



4.5 . Substitution Rule


/ fcgcx ) ) gllxldx =
/flu) du
if 4=41×1 is a differentiable function




set u to
your inner function






when e is involved set u = the power of e
,



differentiate U




manipulate so that function cancels out

" "

remember + C




6. 1 . Inverse functions


only one lone output for each input )

one -
to -





horizontal line -
test




f- ( x ) reflection
'
f- ( y ) = x
y
= in ↳= x




if is with domain A and B then f-
'
has domain B and
f l l
range range A
• -




,




cancellation
equations
"
f- ( fix ) ) = x V ✗ C- A ( Domain of inner function )


f- ( f-
'
( x)) = X U KE B




Find the inverse :


① Let
y
= f- ( x )


② Find domain and range of fcx )

③ Solve for have find the
equation x i. t.co .

y ( sometimes
you to
square )
④ Swap x and
y to find
'
f- ( x )

, Derivative of an inverse function

* If f is a 1-1 continuous function, then f-
'
is also continuous


slope of inverse
f at a =
IF
f is an odd function :


9
'

(
f 1)
-


I
(a) = = I

f- (b)
'
f ' ( fila ) ) fcx ) - DX = 0


I



f-
'

f- (b) = a (a) = b




6. G. Inverse trig functions



trig functions are not 1- I



we must restrict their domains to make them 1- I




Arcsine


sin
_ '

✗ =
y siny=x and
-




y≤ ¥
sin
_ '
Csinx ) = ≥ for
-

É ≤ ✗ ≤ ¥
'
for ≤ 1
sin ( sin
_

-1 ≤ ✗
x ) = x


Input domain :
-
I ≤ ✗ ≤ i


sink =
y




±z
I

'



off
I
( sin
-



x ) =


,
1- ✗ 2 -




-
I




Arccos

'
IT for
-


◦ ≤ x ≤ cos -1 ≤
cosx =
y ,
y = x
y ≤ 1


'
( COSI ) for IT
-



COS = x 0 ≤ ✗ ≤



COS ( COS
'
) for
_


x = x
-
I ≤ × ≤ I



( cos
- '
x ) = -
1 -
I < x e I
;

I 2
-


,Arctan


tan
- '
✗ =
y any
+ =x and
-
¥ <
y < E
( tan
_
'
X) =
I

, 1-1×2




method
triangle
I
' '
Prove sin cos =
_ -



e. ✗ x
g. + 2



¥ Iz
-


' ≤ a ≤
Let
_


a =
sin x
;

✗ Sina
b
=




,
×
b=
'
Let b
-


cos X O ≤ ≤ it


✗ =
costs
a


1- ✗ 2




at b + ¥ =
IT



i. at b =
¥
"
b = b
"
/ nb




Integration

a

:-/
a
"
DX =
Inca )




( É)
/
I

xz+az
=
ta - arctan
/{ du
= 81h ( IU ) )


/¥ dx = In (1×1)

, week 2




6.7 .
Hyperbolic functions

I

" "
sinhx = e -
e- cosechx =
sinhx
2



I

' "
coshx = e' + e- sechx =
cosh >c
2



COSHX
tanhx = sinhx [ ◦ thx =
sinhx
coshx




Hyperbolic identities

cosh >
sin C -
x > = -
sinhx cos he -
x) = coshx sinhcxty ) = sinh >
ccoshy
+
csinhy
coshzx sinhzx cosh >
cushy
= I 1- tanhzx = sech 2x coshlxty ) = +
sinhxsinhy
-




sinhx
"
coshx + =
e Sinha>c) = Zsinhsccosh >c
of
Properties infinity
as ± K = as

Derivatives of Hyperbolic functions
+ A = A


ddxlcosechx)
d
d-✗ ( sinh >c) =
coshx =
-

cosechxcothx
d d
d-
× ( cosh >c) = sin hide fsechx ) =
-

sechxtanhx A. ( IK ) = ± as if k≠O

d
dI ( tanh >c) SECHZX A A
( coth >c) cosechzx
=
= -

= -




= 0 if k≠o
6.8 .
Indeterminate forms and L' Hopital 's Rule

¥ = ± as if k≠O

if k≠o
8- = indeterminate form
ago =
indeterminate form
= as




% =
indeterminate form I = indeterminate form } y=1n . . .
¥ = 0



9- = A



as
form
=

indeterminate

}
as as :
write
quotient
-


as a


A. 0 = indeterminate form

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through EFT, credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller miaolivier16. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for R158,00. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

52928 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 14 years now

Start selling
R158,00  13x  sold
  • (1)
Add to cart
Added