In dit document staan alle aantekeningen van de colleges samengevat, met voorbeeldopdrachten en uitleg erbij. Dit is van het vak Differentiaalvergelijkingen en Lineaire algebra uit het eerste jaar.
Deze samenvatting kan gebruikt worden als aantekeningen om zelf niet naar het college te gaan, voor...
, Echelon vorm........................................................................................................................17
Gereduceerde echelonvorm.................................................................................................17
Consistent of inconsistent?...................................................................................................18
Oneindige oplossingen..........................................................................................................18
Lecture 10; Span en vectorvergelijkingen..........................................................................19
Scalaire vermenigvuldigingen...............................................................................................19
Optellen.................................................................................................................................19
Lineaire combinaties.............................................................................................................19
Span.......................................................................................................................................21
Voorbeeld met span..............................................................................................................21
Voorbeeld met onbekende...................................................................................................21
Lecture 11; Matrixvectorproduct en oplossingsverzamelingen..........................................22
Matrixvectorproduct.............................................................................................................22
Dotproduct en inproduct......................................................................................................22
Matrixvectorproduct voor grote matrixen...........................................................................22
Oplossingsverzamelingen......................................................................................................23
Lecture 12; Lineaire onafhankelijkheid..............................................................................24
Equivalente stellingen...........................................................................................................24
Equivalente stellingen 2........................................................................................................24
Lecture 13; Lineaire transformaties...................................................................................25
Stelling...................................................................................................................................25
Voorbeeldvraag.....................................................................................................................25
Transformaties in het vlak....................................................................................................25
Voorbeeldvraag.....................................................................................................................25
Lecture 14; Matrix operaties.............................................................................................26
Soorten matrixen..................................................................................................................26
Optellen.................................................................................................................................26
Vermenigvuldigen.................................................................................................................26
Transponeren........................................................................................................................26
Samenstellen van lineaire transformaties............................................................................26
Lecture 15; Inverse transformatie......................................................................................28
Inverse berekenen................................................................................................................28
Stelling...................................................................................................................................28
Overige rekenregels..............................................................................................................28
Samenkomst van alle Lineaire Algebra.................................................................................29
, Lecture 1; Differentiaalvergelijkingen
dy
De afgeleide van y(x) is ook wel geschreven als y=
dx
Constante bepalen in algemene oplossing
Hoe bepaal je C in een algemene oplossing? [voorbeeld]
C 2
De algemene oplossing van x y ' + y=3 x 2 → y ( x )= + x
x
Je bepaalt de C uit deze vergelijking door een gegeven; y ( 1 )=4
C
Dit vul je in de formule met de C; 4= +1
1
C
3=
1
C=3
3 2
De algemene oplossing van x y ' + y=3 x 2 → y ( x )= + x
x
Welke functie is een oplossing voor deze differentiaalvergelijking?
Een vraag kan zijn; welke functie is een oplossing voor de differentiaalvergelijking
x y + y=6 x ?
' 2
Bij een multiple-choice vraag kan je als antwoord bijvoorbeeld hebben.
3 2
y= +2 x , dit vul je dan in de bovenstaande formule voor y, en dit leidt je af tot
x
' −3
y = 2 + 4 x , dit vul je ook in de formule in voor y', als er dan 6 x 2 uit komt is het
x
3 2
antwoord dus y= +2 x .
x
Richtingsveld
Op een tentamen kun je een vraag krijgen van welke functie bij een richtingsveld
hoort. Je krijgt dan vaak een functie; y ' =x + y
y staat hierin voor het richtingscoëfficiënt
'
y ' >0 betekend dat de pijl in het richtingsveld omhoog gaat.
y =1 betekend dat de pijl in het richtingsveld 45° omhoog gaat.
'
y ' =0 betekend dat de pijl in het richtingsveld horizontaal ligt.
y <0 betekend dat de pijl in het richtingsveld omlaag gaat.
'
Evenwichtsoplossingen
Een evenwichtsoplossing is ook wel een rechte lijn in een richtingsveld waar alle
pijlen dezelfde kant op wijzen. Er geldt in een constante functie y ' =0 ; drie soorten
1. stabiel evenwicht; de pijlen rond het evenwicht wijzen allemaal ernaartoe.
2. instabiel evenwicht; de pijlen rond het evenwicht wijzen allemaal ervan af.
3. semi-stabiel evenwicht; de pijlen rond het evenwicht wijzen aan de ene kant naar
het evenwicht toe, en aan de andere kant ervan af.
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through EFT, credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying this summary from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller Noudreijn. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy this summary for R126,66. You're not tied to anything after your purchase.