100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Samenvatting Model Organisms In Biological Research (G0G43A) R169,78   Add to cart

Summary

Samenvatting Model Organisms In Biological Research (G0G43A)

 50 views  5 purchases
  • Course
  • Institution

What model organisms are used in research? Find out in this summary! This summary depicts all topics discussed in the course. I got a 17/20 by learning this.

Preview 4 out of 31  pages

  • February 9, 2023
  • 31
  • 2022/2023
  • Summary
avatar-seller
H1: Introduction
1. What defines a model organism?
a) Extensively studied to understand biological phenomena
b) Provide insight into workings other organisms/ biological processes

Model system= used to study very specific topic, used by few research groups

Model organism= used to study variety of topics, used by many research groups

ETHICAL REGULATIONS ON VERTEBRAE + CEPHALOPODS!

1) Explore potential causes and treatments for human disease (experimentation on humans
unethical/ unfeasible)
2) Possible by common descent of living organisms + conservation of metabolic and
developmental pathways

2. Model system to model organism
1. Aristotle: observes developing chicken egg
2. Claudius Galenus: used animals to make assumptions about human anatomy
3. Louis Pasteur: studied diseases in dogs, chickens, sheep, silkworms
4. Gregor Mendel: finds principles of genetics in pea plants

MODEL ORGANISMS ALL BEGAN AS MODEL SYSTEMS!

3. Selecting a suitable model organism
 Large conservation genes: invertebrates – humans  immune system: less direct
counterparts
 Closely related models: mouse + rat + dog + primates

a) Short life-cycle
b) Small size
c) Low cost
d) Genetic techniques (inbred strains + stem cell lines + transfection systems)
e) Non-specialist living requirements
f) Genome arrangement
g) Historical/ natural association with humans

Genetic model - Amenable to genetic analysis: breed in large numbers + short
systems generation time
- Hybridisation possible
- Following over several generations
- Many mutants available
- Detailed genetic maps
C. elegans, D. melanogaster, S. cerevisiae
Experimental - Not genetically amenable: long generation intervals + poor genetic map
model systems - Experimental advantages (developmental biology)
Hydra, Xenopus laevis, chicken
Genomic model - Pivotal position in evolutionary tree


1

, systems - Genome ideal for study
tardigrade, puffer fish



4. Homology and synteny
Homology= similarity in structures due to common descent  insulin genes in mice and humans

Paralogs= two homologous genes that are product of gene duplication  humans with several
hemoglobin genes

Orthologs= two homologous genes that are product of speciation  human and mice insulin

Synteny= finding genes in comparable places (conserved positions throughout evolution)

5. Comparative genomics
a) Understand evolution
b) Improve crops
c) Identify genetic basis of disease

GENETIC INFO IS EXCHANGEABLE: MANY GENES ARE CONSERVED OVER ORGANISMS

GENOME SIZE IS UNRELATED TO COMPLEXITY!

EPIGENETICS + GENE EXPRESSION + ALTERNATIVE SPLICING DETERMINES ORGANISM

Gene expression:

1. Single mutation in FOXP2 gene impairs speech but not language comprehension
2. FOXP2 found in primates + mice  2-3 AA differences
3. Difference allowed speech to arise
 Small changes can affect function
 Diverse lifeforms can emerge from similar toolkits of genes

6. Genome evolution
Autopolyploidy= genome of one species duplicated

Allopolyploidy= hybridization + duplication of genomes of two different species  more copies of
chromosome, bigger organisms

 Release of selection pressure: novel functions + get lost + pseudogene + function partitions
into two duplicates

MANIPULATE MORE DNA IN MODEL ORGANISMS

5% OF HUMAN GENOME CONSISTS OF SEGMENTAL DUPLICATIONS, GENES HAVE DIFFERENT
EXPRESSION PATTERNS

Horizontal gene transfer= genes hitchhike from other species, organisms swap genes (bacteria,
viruses, formation eukaryotes, immune system)

MODEL ORGANISMS DO NOT HAVE FINAL/ OPTIMIZED GENOMES

a) What question needs to be answered?
b) Which organism can help solving this question?

2

, c) What are the possibilities and practical constraints?
d) What are ethical concerns?

7. Browsing through model organisms
 Earth belongs to prokaryotes
 Life on earth is > 3.4 billion years old (Cyanobacteria)
1) Prokaryotes
2) Protista
3) Plants
4) Fungi
5) Invertebrates
6) Vertebrates (fish, birds, amphibians, rodents, dog, monkey)
7) Cell lines

Non-model organisms= drug discovery + evolutionary gap

 Difficult to breed in captivity
 Collected in the wild
 Genome, transcriptome, proteome information and tools often missing

On the other hand, an observation made in one model is often relevant to other models: enhance
interactions between model systems

Complete genome sequences has greatly facilitated comparisons between different species and
increased interactions among research communities


Neurospora crassa - Clean genetics
- Gene-enzyme relationships
- Circadian rhythm
- Epigenetic gene silencing
E. coli - Gene regulation studies
Mycoplasma sp. - Minimal genome that can sustain life
Bacillus subtilis - Gram-positive bacteria
- Sporulation, resistance and biofilms
Caulobacter - Cell differentiation
crecentus - Decision making between stalked cell and swimming
Dictyostelium - Sporulation, resistance and biofilms
discoideum
C. elegans
D. melanogaster

H2: Yeast
Saccharomyces cerevisiae Schizosaccharomyces pombe
Budding yeast Fission yeast: grow on ends, divide in middle
- Cell cycle, DNA repair and genetics - Cell cycle, DNA damage responses &
- Signal transduction genetics
- Protein interaction/aggregation - Subcellular localization & trafficking
- Ageing & disease - RNAi possible
NO INTRONS  easy for research Structure DNA similar to humans

3

, Genome: 1996 Genome: 2002
 Study human disease homologs  Study human disease homologs

1. S. cerevisiae
 Ancestor: 1 billion years ago  evolutionary distance: 2 billion years
 Unicellular eukaryote

Advantages:

1) Small size
2) Rapid growth (doubles every 1-2h)
3) Small genome
4) Amenable for genetics: short life cycle + HIGH RECOMBINATION FREQUENCY + easy
transformation + tetrad analysis

Yeast genome:

 12.5 Mbp in 16 chromosomes
 4% have introns  few alternative splicing
 Average gene is ~1700 bp
 Many genes contain ORF, not all (some genes don’t code for protein)
 1 cM=2.8 kb average (700 kb in humans)

Morgan= unit of chromosomal distance between 2 genes/ recombination frequency/ percentage of
homologous recombination  important to know whether double mutants can be made

 0 M: no recombination, 100M: always recombination
 THE SMALLER cM, THE MORE RECOMBINATION OCCURS!

2. Life cycle
S. cerevisiae (N=16)

 Only mate with other mating type: a and α
 Spores together in ascus  product of single
meiotic division together (genetics traceable)

S. pombe (N=3)

 Mating types (+ and -) mate when starved
 Production ascospores

Choices: divide/not + haploid/diploid + mating and meiosis

Difference: preferred mode of growth + division




1. Haploids divide mitotically  generate stable colony
2. Mat A gene drives A program in cell + 2 α loci on mat α gene drive α program
3. Opposite mating type mates  diploid with A and α gene (no feromones + receptors)
4. Mitosis  stable colony
5. Diploids enter meiosis + sporulate producing tetrads

4

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through EFT, credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller freyavandeneynde16. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for R169,78. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

83637 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 14 years now

Start selling
R169,78  5x  sold
  • (0)
  Buy now