100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Complete summary Combinatorial Optimization (X_401067) R314,22   Add to cart

Summary

Complete summary Combinatorial Optimization (X_401067)

1 review
 79 views  8 purchases
  • Course
  • Institution
  • Book

This summary contains all material taught in the course Combinatorial Optimization to 3rd years Business Analytics student at the VU Amsterdam. I found the information in this course quite overwhelming and hard to understand without the right examples. Therefore, I combined the material from the sl...

[Show more]

Preview 3 out of 39  pages

  • No
  • Chapter 0, 4.1 - 4.4, 5.1.1 - 5.1.3, chapter 6, 7.1-7.4, chapter 8, 9.2 - 9.3
  • March 17, 2023
  • 39
  • 2022/2023
  • Summary

1  review

review-writer-avatar

By: tnmsterk • 1 month ago

avatar-seller
GRAPH THEORY
Graph G VE with n vertices V and m edges E
U is a finite set of points V Eu v2 Un
E is a set of pairs of two distinct points
Nl n and I El M
example G 1,233 1,23 22,33 91,33


I
Twa veces 4 v are adjecent if there is an edge e 4 v te
We also that u and v are incident toe and e is incident
say
to u and v as well 4 u 4 v adjecent
Two edges that share a vertex are also adjecent.ae
e f adjecent

Degree of VEV edges incident tov
example
j d1 3 9121 1 9131 2 d 47 2


the sum of
all degrees 2 edges am
Average degree is therefore Â

A graph is regular if all vertices have the same degree
If all vertices have degree k the graph is k regular
example a regulargraphon 4 vertices
j
A k regular graph on n vertices has Ikn nsk
edges if kn is even

,A graph G Vie is complete if each pair ofpoints is adjecent
A complete graph on n points is denoted by kn
there is an edge between vertices
every pair of
example Ku
j
A graph G is bipartite if V can be split into 2 sets V1 V2
such that there are only edges from vertices in V1 to V2 and
vice versa If every vertex in V1
is connected to every vertexin V2
the graph is complete bipartite In that case kV UV2 has edge
set E E V1V22luieV1 VrtV2
A complete bipartite graph with IVil m and Ihlen is
km. ame
Öi
bipartitegraph
ii
graphnu
complete bipartite
Ï
not a bipartitegraph


A walk in a graph G v e is a sequence of vertices vo.vn Vk
such that Vii and Vi are connected for all El k
The length of a walk is dended k
b
are all distinctthe walk is a path
g p j Walk is e9 2,53,42,3

zit path is eg 2,5 3,4

, A graph is connected if there is a path between any two
of its vertices
example riff NÄÄÄ
connededgraph onedeagraph



A graph G V E is a subgraph of G vie if
U EV E
JE
is a subset of

Subgraph is a graph within a largergraph
example j
G E
Ili
G
component of G is the maximal connected subgraph G IV E
there are no edges we could add to this subgraph while preserving
connectiveness

example
Ï Ï II
subgraph G of G maxima connected
IIIIergmp nen µ component subgraph of G
Thm A graph is connected it exists of exactly 1 component
So any disconnected graph consists of at least a components


A Walk VoUn Vkl is a closed walk cycle if Vo vr
A cycle with all vertices distinct is a circuit


j
example walk is e9 2,53,423,27
circuit is eg 2,53,21

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through EFT, credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller jorinemol. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for R314,22. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

80364 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 14 years now

Start selling
R314,22  8x  sold
  • (1)
  Buy now